Meromorphic univalent function with negative coefficient

Let Mn be the classes of regular functions f(z)=z−1+a0+a1z+… defined in the annulus 0<|z|<1 and satisfying ReIn+1f(z)In+1f(z)>0, (n∈ℕ0), where I0f(z)=f(z), If(z)=(z−1−z(z−1)−2)∗f(z), Inf(z)=I(In−1f(z)), and ∗ is the Hadamard convolution. We denote by Γn=Mn⋃Γ, where Γ denotes the class of fu...

Full description

Saved in:
Bibliographic Details
Main Author: A. Dernek
Format: Article
Language:English
Published: Wiley 1994-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171294000293
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850232123737243648
author A. Dernek
author_facet A. Dernek
author_sort A. Dernek
collection DOAJ
description Let Mn be the classes of regular functions f(z)=z−1+a0+a1z+… defined in the annulus 0<|z|<1 and satisfying ReIn+1f(z)In+1f(z)>0, (n∈ℕ0), where I0f(z)=f(z), If(z)=(z−1−z(z−1)−2)∗f(z), Inf(z)=I(In−1f(z)), and ∗ is the Hadamard convolution. We denote by Γn=Mn⋃Γ, where Γ denotes the class of functions of the form f(z)=z−1+∑k=1∞|ak|zk. We obtained that relates the modulus of the coefficients to starlikeness for the classes Mn and Γn, and coefficient inequalities for the classes Γn.
format Article
id doaj-art-036f001d682a45798dbfd0ca2ff91e3b
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 1994-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-036f001d682a45798dbfd0ca2ff91e3b2025-08-20T02:03:17ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251994-01-0117120120310.1155/S0161171294000293Meromorphic univalent function with negative coefficientA. Dernek0Department of Mathematics, Marmara University, Göztepe Kampüsü, Istanbul 81080, TurkeyLet Mn be the classes of regular functions f(z)=z−1+a0+a1z+… defined in the annulus 0<|z|<1 and satisfying ReIn+1f(z)In+1f(z)>0, (n∈ℕ0), where I0f(z)=f(z), If(z)=(z−1−z(z−1)−2)∗f(z), Inf(z)=I(In−1f(z)), and ∗ is the Hadamard convolution. We denote by Γn=Mn⋃Γ, where Γ denotes the class of functions of the form f(z)=z−1+∑k=1∞|ak|zk. We obtained that relates the modulus of the coefficients to starlikeness for the classes Mn and Γn, and coefficient inequalities for the classes Γn.http://dx.doi.org/10.1155/S0161171294000293univalent meromorphic functionsHadamard product.
spellingShingle A. Dernek
Meromorphic univalent function with negative coefficient
International Journal of Mathematics and Mathematical Sciences
univalent meromorphic functions
Hadamard product.
title Meromorphic univalent function with negative coefficient
title_full Meromorphic univalent function with negative coefficient
title_fullStr Meromorphic univalent function with negative coefficient
title_full_unstemmed Meromorphic univalent function with negative coefficient
title_short Meromorphic univalent function with negative coefficient
title_sort meromorphic univalent function with negative coefficient
topic univalent meromorphic functions
Hadamard product.
url http://dx.doi.org/10.1155/S0161171294000293
work_keys_str_mv AT adernek meromorphicunivalentfunctionwithnegativecoefficient