Some remarks on Riesz transforms on exterior Lipschitz domains

Let $n\ge 2$ and $\mathcal {L}=-\mathrm {div}(A\nabla \cdot )$ be an elliptic operator on $\mathbb {R}^n$ . Given an exterior Lipschitz domain $\Omega $ , let $\mathcal {L}_D$ be the elliptic operator $\mathcal {L}$ on $\Omega $ subject to the Dirichlet...

Full description

Saved in:
Bibliographic Details
Main Authors: Renjin Jiang, Sibei Yang
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509425000192/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850218600124645376
author Renjin Jiang
Sibei Yang
author_facet Renjin Jiang
Sibei Yang
author_sort Renjin Jiang
collection DOAJ
description Let $n\ge 2$ and $\mathcal {L}=-\mathrm {div}(A\nabla \cdot )$ be an elliptic operator on $\mathbb {R}^n$ . Given an exterior Lipschitz domain $\Omega $ , let $\mathcal {L}_D$ be the elliptic operator $\mathcal {L}$ on $\Omega $ subject to the Dirichlet boundary condition. Previously, it was known that the Riesz transform $\nabla \mathcal {L}_D^{-1/2}$ is not bounded for $p>2$ and $p\ge n$ , even if $\mathcal {L}=\Delta $ is the Laplace operator and $\Omega $ is a domain outside a ball. Suppose that A are CMO coefficients or VMO coefficients satisfying certain perturbation property, and $\partial \Omega $ is $C^1$ . We prove that for $p>2$ and $p\in [n,\infty )$ , it holds that $$ \begin{align*}\inf_{\phi\in\mathcal{K}_p(\mathcal{L}_D^{1/2})}\left\|\nabla (f-\phi)\right\|_{L^p(\Omega)}\sim \left\|\mathcal{L}^{1/2}_D f\right\|_{L^p(\Omega)} \end{align*} $$
format Article
id doaj-art-033f7755870e4f149e5f5784cee80a3f
institution OA Journals
issn 2050-5094
language English
publishDate 2025-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj-art-033f7755870e4f149e5f5784cee80a3f2025-08-20T02:07:40ZengCambridge University PressForum of Mathematics, Sigma2050-50942025-01-011310.1017/fms.2025.19Some remarks on Riesz transforms on exterior Lipschitz domainsRenjin Jiang0https://orcid.org/0000-0003-3458-9610Sibei Yang1https://orcid.org/0000-0002-6910-9958Academy for Multidisciplinary Studies, Capital Normal University, Beijing, 100048, ChinaSchool of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, 730000, China; E-mail:Let $n\ge 2$ and $\mathcal {L}=-\mathrm {div}(A\nabla \cdot )$ be an elliptic operator on $\mathbb {R}^n$ . Given an exterior Lipschitz domain $\Omega $ , let $\mathcal {L}_D$ be the elliptic operator $\mathcal {L}$ on $\Omega $ subject to the Dirichlet boundary condition. Previously, it was known that the Riesz transform $\nabla \mathcal {L}_D^{-1/2}$ is not bounded for $p>2$ and $p\ge n$ , even if $\mathcal {L}=\Delta $ is the Laplace operator and $\Omega $ is a domain outside a ball. Suppose that A are CMO coefficients or VMO coefficients satisfying certain perturbation property, and $\partial \Omega $ is $C^1$ . We prove that for $p>2$ and $p\in [n,\infty )$ , it holds that $$ \begin{align*}\inf_{\phi\in\mathcal{K}_p(\mathcal{L}_D^{1/2})}\left\|\nabla (f-\phi)\right\|_{L^p(\Omega)}\sim \left\|\mathcal{L}^{1/2}_D f\right\|_{L^p(\Omega)} \end{align*} $$ https://www.cambridge.org/core/product/identifier/S2050509425000192/type/journal_article35J2535B6542B3542B37
spellingShingle Renjin Jiang
Sibei Yang
Some remarks on Riesz transforms on exterior Lipschitz domains
Forum of Mathematics, Sigma
35J25
35B65
42B35
42B37
title Some remarks on Riesz transforms on exterior Lipschitz domains
title_full Some remarks on Riesz transforms on exterior Lipschitz domains
title_fullStr Some remarks on Riesz transforms on exterior Lipschitz domains
title_full_unstemmed Some remarks on Riesz transforms on exterior Lipschitz domains
title_short Some remarks on Riesz transforms on exterior Lipschitz domains
title_sort some remarks on riesz transforms on exterior lipschitz domains
topic 35J25
35B65
42B35
42B37
url https://www.cambridge.org/core/product/identifier/S2050509425000192/type/journal_article
work_keys_str_mv AT renjinjiang someremarksonriesztransformsonexteriorlipschitzdomains
AT sibeiyang someremarksonriesztransformsonexteriorlipschitzdomains