Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene

Abstract Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas‐diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine‐containing microgels‐augmented CO2 availability is...

Full description

Saved in:
Bibliographic Details
Main Authors: Hesamoddin Rabiee, Mengran Li, Penghui Yan, Yuming Wu, Xueqin Zhang, Fatereh Dorosti, Xi Zhang, Beibei Ma, Shihu Hu, Hao Wang, Zhonghua Zhu, Lei Ge
Format: Article
Language:English
Published: Wiley 2024-10-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202402964
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850201619995557888
author Hesamoddin Rabiee
Mengran Li
Penghui Yan
Yuming Wu
Xueqin Zhang
Fatereh Dorosti
Xi Zhang
Beibei Ma
Shihu Hu
Hao Wang
Zhonghua Zhu
Lei Ge
author_facet Hesamoddin Rabiee
Mengran Li
Penghui Yan
Yuming Wu
Xueqin Zhang
Fatereh Dorosti
Xi Zhang
Beibei Ma
Shihu Hu
Hao Wang
Zhonghua Zhu
Lei Ge
author_sort Hesamoddin Rabiee
collection DOAJ
description Abstract Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas‐diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine‐containing microgels‐augmented CO2 availability is presented in Cu2O‐based GDE for high‐rate CO2 reduction to ethylene, owing to the presence of CO2‐phil microgels with amine moieties. Microgels as three‐dimensional polymer networks act as CO2 micro‐reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4‐vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine‐based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm−2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm−2. A similar trend was observed in zero‐gap design, and GDEs showed 58% FE of ethylene at −4.0 cell voltage (>350 mA cm−2 current density), resulting in over 2‐fold improvement in ethylene production. This study showcases the use of CO2‐phil microgels for a higher rate of CO2RR‐to‐C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis.
format Article
id doaj-art-032f084bdecf448c9a21da46dfa19cd6
institution OA Journals
issn 2198-3844
language English
publishDate 2024-10-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj-art-032f084bdecf448c9a21da46dfa19cd62025-08-20T02:11:58ZengWileyAdvanced Science2198-38442024-10-011140n/an/a10.1002/advs.202402964Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to EthyleneHesamoddin Rabiee0Mengran Li1Penghui Yan2Yuming Wu3Xueqin Zhang4Fatereh Dorosti5Xi Zhang6Beibei Ma7Shihu Hu8Hao Wang9Zhonghua Zhu10Lei Ge11School of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaDepartment of Chemical Engineering The University of Melbourne Melbourne VIC 3052 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaSchool of Engineering Macquarie University Sydney NSW 2109 AustraliaAustralian Centre for Water and Environmental Biotechnology (ACWEB) The University of Queensland St. Lucia QLD 4072 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaAustralian Centre for Water and Environmental Biotechnology (ACWEB) The University of Queensland St. Lucia QLD 4072 AustraliaCentre for Future Materials University of Southern Queensland Springfield QLD 4300 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaCentre for Future Materials University of Southern Queensland Springfield QLD 4300 AustraliaAbstract Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas‐diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine‐containing microgels‐augmented CO2 availability is presented in Cu2O‐based GDE for high‐rate CO2 reduction to ethylene, owing to the presence of CO2‐phil microgels with amine moieties. Microgels as three‐dimensional polymer networks act as CO2 micro‐reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4‐vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine‐based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm−2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm−2. A similar trend was observed in zero‐gap design, and GDEs showed 58% FE of ethylene at −4.0 cell voltage (>350 mA cm−2 current density), resulting in over 2‐fold improvement in ethylene production. This study showcases the use of CO2‐phil microgels for a higher rate of CO2RR‐to‐C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis.https://doi.org/10.1002/advs.202402964CO2 micro‐reservoirelectrochemical CO2 reduction reactiongas‐diffusion electrodeGDE MicroenvironmentPyridine Microgels
spellingShingle Hesamoddin Rabiee
Mengran Li
Penghui Yan
Yuming Wu
Xueqin Zhang
Fatereh Dorosti
Xi Zhang
Beibei Ma
Shihu Hu
Hao Wang
Zhonghua Zhu
Lei Ge
Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene
Advanced Science
CO2 micro‐reservoir
electrochemical CO2 reduction reaction
gas‐diffusion electrode
GDE Microenvironment
Pyridine Microgels
title Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene
title_full Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene
title_fullStr Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene
title_full_unstemmed Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene
title_short Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene
title_sort rational designing microenvironment of gas diffusion electrodes via microgel augmented co2 availability for high rate and selective co2 electroreduction to ethylene
topic CO2 micro‐reservoir
electrochemical CO2 reduction reaction
gas‐diffusion electrode
GDE Microenvironment
Pyridine Microgels
url https://doi.org/10.1002/advs.202402964
work_keys_str_mv AT hesamoddinrabiee rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT mengranli rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT penghuiyan rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT yumingwu rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT xueqinzhang rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT faterehdorosti rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT xizhang rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT beibeima rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT shihuhu rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT haowang rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT zhonghuazhu rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene
AT leige rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene