Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene
Abstract Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas‐diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine‐containing microgels‐augmented CO2 availability is...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2024-10-01
|
| Series: | Advanced Science |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/advs.202402964 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850201619995557888 |
|---|---|
| author | Hesamoddin Rabiee Mengran Li Penghui Yan Yuming Wu Xueqin Zhang Fatereh Dorosti Xi Zhang Beibei Ma Shihu Hu Hao Wang Zhonghua Zhu Lei Ge |
| author_facet | Hesamoddin Rabiee Mengran Li Penghui Yan Yuming Wu Xueqin Zhang Fatereh Dorosti Xi Zhang Beibei Ma Shihu Hu Hao Wang Zhonghua Zhu Lei Ge |
| author_sort | Hesamoddin Rabiee |
| collection | DOAJ |
| description | Abstract Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas‐diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine‐containing microgels‐augmented CO2 availability is presented in Cu2O‐based GDE for high‐rate CO2 reduction to ethylene, owing to the presence of CO2‐phil microgels with amine moieties. Microgels as three‐dimensional polymer networks act as CO2 micro‐reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4‐vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine‐based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm−2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm−2. A similar trend was observed in zero‐gap design, and GDEs showed 58% FE of ethylene at −4.0 cell voltage (>350 mA cm−2 current density), resulting in over 2‐fold improvement in ethylene production. This study showcases the use of CO2‐phil microgels for a higher rate of CO2RR‐to‐C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis. |
| format | Article |
| id | doaj-art-032f084bdecf448c9a21da46dfa19cd6 |
| institution | OA Journals |
| issn | 2198-3844 |
| language | English |
| publishDate | 2024-10-01 |
| publisher | Wiley |
| record_format | Article |
| series | Advanced Science |
| spelling | doaj-art-032f084bdecf448c9a21da46dfa19cd62025-08-20T02:11:58ZengWileyAdvanced Science2198-38442024-10-011140n/an/a10.1002/advs.202402964Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to EthyleneHesamoddin Rabiee0Mengran Li1Penghui Yan2Yuming Wu3Xueqin Zhang4Fatereh Dorosti5Xi Zhang6Beibei Ma7Shihu Hu8Hao Wang9Zhonghua Zhu10Lei Ge11School of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaDepartment of Chemical Engineering The University of Melbourne Melbourne VIC 3052 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaSchool of Engineering Macquarie University Sydney NSW 2109 AustraliaAustralian Centre for Water and Environmental Biotechnology (ACWEB) The University of Queensland St. Lucia QLD 4072 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaAustralian Centre for Water and Environmental Biotechnology (ACWEB) The University of Queensland St. Lucia QLD 4072 AustraliaCentre for Future Materials University of Southern Queensland Springfield QLD 4300 AustraliaSchool of Chemical Engineering The University of Queensland Brisbane QLD 4072 AustraliaCentre for Future Materials University of Southern Queensland Springfield QLD 4300 AustraliaAbstract Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas‐diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine‐containing microgels‐augmented CO2 availability is presented in Cu2O‐based GDE for high‐rate CO2 reduction to ethylene, owing to the presence of CO2‐phil microgels with amine moieties. Microgels as three‐dimensional polymer networks act as CO2 micro‐reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4‐vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine‐based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm−2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm−2. A similar trend was observed in zero‐gap design, and GDEs showed 58% FE of ethylene at −4.0 cell voltage (>350 mA cm−2 current density), resulting in over 2‐fold improvement in ethylene production. This study showcases the use of CO2‐phil microgels for a higher rate of CO2RR‐to‐C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis.https://doi.org/10.1002/advs.202402964CO2 micro‐reservoirelectrochemical CO2 reduction reactiongas‐diffusion electrodeGDE MicroenvironmentPyridine Microgels |
| spellingShingle | Hesamoddin Rabiee Mengran Li Penghui Yan Yuming Wu Xueqin Zhang Fatereh Dorosti Xi Zhang Beibei Ma Shihu Hu Hao Wang Zhonghua Zhu Lei Ge Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene Advanced Science CO2 micro‐reservoir electrochemical CO2 reduction reaction gas‐diffusion electrode GDE Microenvironment Pyridine Microgels |
| title | Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene |
| title_full | Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene |
| title_fullStr | Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene |
| title_full_unstemmed | Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene |
| title_short | Rational Designing Microenvironment of Gas‐Diffusion Electrodes via Microgel‐Augmented CO2 Availability for High‐Rate and Selective CO2 Electroreduction to Ethylene |
| title_sort | rational designing microenvironment of gas diffusion electrodes via microgel augmented co2 availability for high rate and selective co2 electroreduction to ethylene |
| topic | CO2 micro‐reservoir electrochemical CO2 reduction reaction gas‐diffusion electrode GDE Microenvironment Pyridine Microgels |
| url | https://doi.org/10.1002/advs.202402964 |
| work_keys_str_mv | AT hesamoddinrabiee rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT mengranli rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT penghuiyan rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT yumingwu rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT xueqinzhang rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT faterehdorosti rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT xizhang rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT beibeima rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT shihuhu rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT haowang rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT zhonghuazhu rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene AT leige rationaldesigningmicroenvironmentofgasdiffusionelectrodesviamicrogelaugmentedco2availabilityforhighrateandselectiveco2electroreductiontoethylene |