Skew Cyclic Codes Over &#x2124;<sub>4</sub> + <italic>u</italic>&#x2124;<sub>4</sub> With Derivation Based on a New Gray Map and Automorphism

This paper investigates the algebraic structure and properties of skew cyclic codes over the finite chain ring <inline-formula> <tex-math notation="LaTeX">$R = \mathbb {Z}_{4} + u\mathbb {Z}_{4}$ </tex-math></inline-formula>, where <inline-formula> <tex-mat...

Full description

Saved in:
Bibliographic Details
Main Author: Eda Tekin
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/11105441/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the algebraic structure and properties of skew cyclic codes over the finite chain ring <inline-formula> <tex-math notation="LaTeX">$R = \mathbb {Z}_{4} + u\mathbb {Z}_{4}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$u^{2} = 0$ </tex-math></inline-formula>. A central contribution of this work is the introduction and application of a novel Gray map, establishing a distance-preserving link between codes over R and linear codes over <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula>. We employ a specific, compatible pair consisting of a ring automorphism <inline-formula> <tex-math notation="LaTeX">$\theta $ </tex-math></inline-formula> and a <inline-formula> <tex-math notation="LaTeX">$\theta $ </tex-math></inline-formula>-derivation <inline-formula> <tex-math notation="LaTeX">$\eta $ </tex-math></inline-formula> to define the appropriate skew polynomial ring structure <inline-formula> <tex-math notation="LaTeX">$R[x; \theta , \eta]$ </tex-math></inline-formula>. Within this algebraic framework, we provide a comprehensive analysis of the fundamental structure of free <inline-formula> <tex-math notation="LaTeX">$(\theta , \eta)$ </tex-math></inline-formula>-cyclic codes, detailing their generator polynomial structure and establishing their precise relationship with classical cyclic or quasi-cyclic codes. Furthermore, the structure of Euclidean dual codes for these free codes is examined for even lengths, and a construction for double <inline-formula> <tex-math notation="LaTeX">$(\theta , \eta)$ </tex-math></inline-formula>-cyclic codes from free constituent codes is also presented.
ISSN:2169-3536