Density of systoles of hyperbolic manifolds
We show that for each $n \ge 2$, the systoles of closed hyperbolic $n$-manifolds form a dense subset of $(0, +\infty )$. We also show that for any $n\ge 2$ and any Salem number $\lambda $, there is a closed arithmetic hyperbolic $n$-manifold of systole $\log (\lambda )$. In particular, the Salem con...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.689/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206128689020928 |
---|---|
author | Douba, Sami Huang, Junzhi |
author_facet | Douba, Sami Huang, Junzhi |
author_sort | Douba, Sami |
collection | DOAJ |
description | We show that for each $n \ge 2$, the systoles of closed hyperbolic $n$-manifolds form a dense subset of $(0, +\infty )$. We also show that for any $n\ge 2$ and any Salem number $\lambda $, there is a closed arithmetic hyperbolic $n$-manifold of systole $\log (\lambda )$. In particular, the Salem conjecture holds if and only if the systoles of closed arithmetic hyperbolic manifolds in some (any) dimension fail to be dense in $(0, +\infty )$. |
format | Article |
id | doaj-art-031240805258479cbc6c7c2f90f639f1 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-031240805258479cbc6c7c2f90f639f12025-02-07T11:26:37ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G121819182410.5802/crmath.68910.5802/crmath.689Density of systoles of hyperbolic manifoldsDouba, Sami0Huang, Junzhi1Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, FranceDepartment of Mathematics, Yale University, New Haven, CT 06511, USAWe show that for each $n \ge 2$, the systoles of closed hyperbolic $n$-manifolds form a dense subset of $(0, +\infty )$. We also show that for any $n\ge 2$ and any Salem number $\lambda $, there is a closed arithmetic hyperbolic $n$-manifold of systole $\log (\lambda )$. In particular, the Salem conjecture holds if and only if the systoles of closed arithmetic hyperbolic manifolds in some (any) dimension fail to be dense in $(0, +\infty )$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.689/Geometric topologyhyperbolic manifoldssystolesarithmetic groups |
spellingShingle | Douba, Sami Huang, Junzhi Density of systoles of hyperbolic manifolds Comptes Rendus. Mathématique Geometric topology hyperbolic manifolds systoles arithmetic groups |
title | Density of systoles of hyperbolic manifolds |
title_full | Density of systoles of hyperbolic manifolds |
title_fullStr | Density of systoles of hyperbolic manifolds |
title_full_unstemmed | Density of systoles of hyperbolic manifolds |
title_short | Density of systoles of hyperbolic manifolds |
title_sort | density of systoles of hyperbolic manifolds |
topic | Geometric topology hyperbolic manifolds systoles arithmetic groups |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.689/ |
work_keys_str_mv | AT doubasami densityofsystolesofhyperbolicmanifolds AT huangjunzhi densityofsystolesofhyperbolicmanifolds |