Density of systoles of hyperbolic manifolds

We show that for each $n \ge 2$, the systoles of closed hyperbolic $n$-manifolds form a dense subset of $(0, +\infty )$. We also show that for any $n\ge 2$ and any Salem number $\lambda $, there is a closed arithmetic hyperbolic $n$-manifold of systole $\log (\lambda )$. In particular, the Salem con...

Full description

Saved in:
Bibliographic Details
Main Authors: Douba, Sami, Huang, Junzhi
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.689/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206128689020928
author Douba, Sami
Huang, Junzhi
author_facet Douba, Sami
Huang, Junzhi
author_sort Douba, Sami
collection DOAJ
description We show that for each $n \ge 2$, the systoles of closed hyperbolic $n$-manifolds form a dense subset of $(0, +\infty )$. We also show that for any $n\ge 2$ and any Salem number $\lambda $, there is a closed arithmetic hyperbolic $n$-manifold of systole $\log (\lambda )$. In particular, the Salem conjecture holds if and only if the systoles of closed arithmetic hyperbolic manifolds in some (any) dimension fail to be dense in $(0, +\infty )$.
format Article
id doaj-art-031240805258479cbc6c7c2f90f639f1
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-031240805258479cbc6c7c2f90f639f12025-02-07T11:26:37ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G121819182410.5802/crmath.68910.5802/crmath.689Density of systoles of hyperbolic manifoldsDouba, Sami0Huang, Junzhi1Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, FranceDepartment of Mathematics, Yale University, New Haven, CT 06511, USAWe show that for each $n \ge 2$, the systoles of closed hyperbolic $n$-manifolds form a dense subset of $(0, +\infty )$. We also show that for any $n\ge 2$ and any Salem number $\lambda $, there is a closed arithmetic hyperbolic $n$-manifold of systole $\log (\lambda )$. In particular, the Salem conjecture holds if and only if the systoles of closed arithmetic hyperbolic manifolds in some (any) dimension fail to be dense in $(0, +\infty )$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.689/Geometric topologyhyperbolic manifoldssystolesarithmetic groups
spellingShingle Douba, Sami
Huang, Junzhi
Density of systoles of hyperbolic manifolds
Comptes Rendus. Mathématique
Geometric topology
hyperbolic manifolds
systoles
arithmetic groups
title Density of systoles of hyperbolic manifolds
title_full Density of systoles of hyperbolic manifolds
title_fullStr Density of systoles of hyperbolic manifolds
title_full_unstemmed Density of systoles of hyperbolic manifolds
title_short Density of systoles of hyperbolic manifolds
title_sort density of systoles of hyperbolic manifolds
topic Geometric topology
hyperbolic manifolds
systoles
arithmetic groups
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.689/
work_keys_str_mv AT doubasami densityofsystolesofhyperbolicmanifolds
AT huangjunzhi densityofsystolesofhyperbolicmanifolds