The distribution of nonprincipal eigenvalues of singular second-order linear ordinary differential equations

We obtain the asymptotic distribution of the nonprincipal eigenvalues associated with the singular problem x″+λq(t)x=0 on an infinite interval [a,+∞). Similar to the regular eigenvalue problem on compact intervals, we can prove a Weyl-type expansion of the eigenvalue counting function, and we derive...

Full description

Saved in:
Bibliographic Details
Main Author: Juan Pablo Pinasco
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/29895
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551576678432768
author Juan Pablo Pinasco
author_facet Juan Pablo Pinasco
author_sort Juan Pablo Pinasco
collection DOAJ
description We obtain the asymptotic distribution of the nonprincipal eigenvalues associated with the singular problem x″+λq(t)x=0 on an infinite interval [a,+∞). Similar to the regular eigenvalue problem on compact intervals, we can prove a Weyl-type expansion of the eigenvalue counting function, and we derive the asymptotic behavior of the eigenvalues.
format Article
id doaj-art-02f8a3a51af740248aaf11204bcdbe90
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2006-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-02f8a3a51af740248aaf11204bcdbe902025-02-03T06:01:00ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/2989529895The distribution of nonprincipal eigenvalues of singular second-order linear ordinary differential equationsJuan Pablo Pinasco0Instituto de Ciencias, Universidad Nacional de General Sarmiento, J. M. Gutierrez 1150, Los Polvorines, Buenos Aires 1613, ArgentinaWe obtain the asymptotic distribution of the nonprincipal eigenvalues associated with the singular problem x″+λq(t)x=0 on an infinite interval [a,+∞). Similar to the regular eigenvalue problem on compact intervals, we can prove a Weyl-type expansion of the eigenvalue counting function, and we derive the asymptotic behavior of the eigenvalues.http://dx.doi.org/10.1155/IJMMS/2006/29895
spellingShingle Juan Pablo Pinasco
The distribution of nonprincipal eigenvalues of singular second-order linear ordinary differential equations
International Journal of Mathematics and Mathematical Sciences
title The distribution of nonprincipal eigenvalues of singular second-order linear ordinary differential equations
title_full The distribution of nonprincipal eigenvalues of singular second-order linear ordinary differential equations
title_fullStr The distribution of nonprincipal eigenvalues of singular second-order linear ordinary differential equations
title_full_unstemmed The distribution of nonprincipal eigenvalues of singular second-order linear ordinary differential equations
title_short The distribution of nonprincipal eigenvalues of singular second-order linear ordinary differential equations
title_sort distribution of nonprincipal eigenvalues of singular second order linear ordinary differential equations
url http://dx.doi.org/10.1155/IJMMS/2006/29895
work_keys_str_mv AT juanpablopinasco thedistributionofnonprincipaleigenvaluesofsingularsecondorderlinearordinarydifferentialequations
AT juanpablopinasco distributionofnonprincipaleigenvaluesofsingularsecondorderlinearordinarydifferentialequations