Heavy Metals Distribution and Source Identification in Contaminated Agricultural Soils: Isotopic and Multi-Model Analysis
Heavy metal pollution in agricultural soil has been tightly associated with anthropogenic emissions. Although there are many studies that focus on a regional scale, the source identification of heavy metal contamination on a field scale around industrial areas remains unclear. The average concentrat...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Agronomy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4395/15/4/812 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Heavy metal pollution in agricultural soil has been tightly associated with anthropogenic emissions. Although there are many studies that focus on a regional scale, the source identification of heavy metal contamination on a field scale around industrial areas remains unclear. The average concentrations in topsoils of Hg, Cd, As, Pb, Cr, Ni, Zn, and Cu were 2.07, 0.13, 8.56, 42.3, 81.1, 37.3, 105, and 43.8 mg kg<sup>−1</sup>, respectively. The enrichment of Hg was particularly presented on topsoils, with the highest single pollution index (Pi) (9.00) and ecological risk index (Eri) (922) values. An integrated methodology was employed in source identification of heavy metals contamination, especially for Hg, including Pearson’s and PCA analysis, soil profile morphology, mathematical modeling, and Hg isotope analysis. Results revealed that the concentrations of Hg decreased as a function of depth, suggesting Hg contamination was an anthropogenic source and can be supported by Hg isotope analysis. The negative Δ<sup>199</sup>Hg values of the residual Hg (F4-Hg) and soil profile in 80–100 cm deviate from those of the soil profiles in 0–80 cm, indicating exogenous input of Hg occurred in the study area. According to the UNMIX model, the contribution of coal combustion, agricultural activities, parent material, and industrial/traffic emissions to Hg accumulation in soils were 66.2%, 16.9%, 9.81%, and 7.0%, respectively. However, the contribution rates calculated with the PMF model of mixed industrial source, traffic emissions, and parent material were 71.4%, 27.8%, and 0.8%, respectively. This study can accurately quantify and identify the factors contributing to heavy metal contamination in agricultural soil on a field scale. |
|---|---|
| ISSN: | 2073-4395 |