Binary phase-only gallium oxide diffractive optical element for beam shaping
Abstract This study presents an experimentally validated demonstration of an inverse-optimized binary phase-only gallium oxide diffractive optical element (DOE). This DOE transforms an incident Gaussian beam into a square flat-top beam at the working plane. The design methodology for this binary pha...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-89663-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850251787715477504 |
|---|---|
| author | Wei Jia Steve Blair Berardi Sensale-Rodriguez |
| author_facet | Wei Jia Steve Blair Berardi Sensale-Rodriguez |
| author_sort | Wei Jia |
| collection | DOAJ |
| description | Abstract This study presents an experimentally validated demonstration of an inverse-optimized binary phase-only gallium oxide diffractive optical element (DOE). This DOE transforms an incident Gaussian beam into a square flat-top beam at the working plane. The design methodology for this binary phase-only DOE beam shaper is founded on an efficient process that integrates the modified Gerchberg-Saxton algorithm and the adjoint method. Experimental characterization of the fabricated device on a single crystal $$(\overline{2} \; 01)$$ gallium oxide substrate is conducted at a wavelength of 532 nm, confirming its ability to transform an incident Gaussian beam into a focused square flat-top beam. Such a device holds significant promise for various high-power laser applications, notably in laser welding and similar domains. Furthermore, because of the ultrawide bandgap of gallium oxide, DOEs operating at shorter wavelengths in the UV are also possible based on this technique. |
| format | Article |
| id | doaj-art-02e4de32ecb648acbc1da9bcadb2fe4b |
| institution | OA Journals |
| issn | 2045-2322 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Scientific Reports |
| spelling | doaj-art-02e4de32ecb648acbc1da9bcadb2fe4b2025-08-20T01:57:49ZengNature PortfolioScientific Reports2045-23222025-02-011511810.1038/s41598-025-89663-0Binary phase-only gallium oxide diffractive optical element for beam shapingWei Jia0Steve Blair1Berardi Sensale-Rodriguez2Department of Electrical and Computer Engineering, The University of UtahDepartment of Electrical and Computer Engineering, The University of UtahDepartment of Electrical and Computer Engineering, The University of UtahAbstract This study presents an experimentally validated demonstration of an inverse-optimized binary phase-only gallium oxide diffractive optical element (DOE). This DOE transforms an incident Gaussian beam into a square flat-top beam at the working plane. The design methodology for this binary phase-only DOE beam shaper is founded on an efficient process that integrates the modified Gerchberg-Saxton algorithm and the adjoint method. Experimental characterization of the fabricated device on a single crystal $$(\overline{2} \; 01)$$ gallium oxide substrate is conducted at a wavelength of 532 nm, confirming its ability to transform an incident Gaussian beam into a focused square flat-top beam. Such a device holds significant promise for various high-power laser applications, notably in laser welding and similar domains. Furthermore, because of the ultrawide bandgap of gallium oxide, DOEs operating at shorter wavelengths in the UV are also possible based on this technique.https://doi.org/10.1038/s41598-025-89663-0Binary phaseGallium oxideDiffractive optical elementBeam shaping |
| spellingShingle | Wei Jia Steve Blair Berardi Sensale-Rodriguez Binary phase-only gallium oxide diffractive optical element for beam shaping Scientific Reports Binary phase Gallium oxide Diffractive optical element Beam shaping |
| title | Binary phase-only gallium oxide diffractive optical element for beam shaping |
| title_full | Binary phase-only gallium oxide diffractive optical element for beam shaping |
| title_fullStr | Binary phase-only gallium oxide diffractive optical element for beam shaping |
| title_full_unstemmed | Binary phase-only gallium oxide diffractive optical element for beam shaping |
| title_short | Binary phase-only gallium oxide diffractive optical element for beam shaping |
| title_sort | binary phase only gallium oxide diffractive optical element for beam shaping |
| topic | Binary phase Gallium oxide Diffractive optical element Beam shaping |
| url | https://doi.org/10.1038/s41598-025-89663-0 |
| work_keys_str_mv | AT weijia binaryphaseonlygalliumoxidediffractiveopticalelementforbeamshaping AT steveblair binaryphaseonlygalliumoxidediffractiveopticalelementforbeamshaping AT berardisensalerodriguez binaryphaseonlygalliumoxidediffractiveopticalelementforbeamshaping |