Mesoscale and Local Scale Evaluations of Quantitative Precipitation Estimates by Weather Radar Products during a Heavy Rainfall Event
A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE) by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Advances in Meteorology |
Online Access: | http://dx.doi.org/10.1155/2016/6089319 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE) by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison with two reference rain-gauge networks. Mesoscale accuracy was assessed for the total rainfall accumulated during the 24-hour event, using the Météo France operational rain-gauge network. Local scale accuracy was assessed for both total event rainfall and hourly rainfall accumulations, using the recently developed HydraVitis high-resolution rain gauge network Evaluation shows that (1) PANTHERE radar-based QPE underestimates rainfall fields at mesoscale and local scale; (2) both PANTHERE and ANTILOPE successfully reproduced the spatial variability of rainfall at local scale; (3) PANTHERE underestimates can be significantly improved at local scale by merging these data with rain gauge data interpolation (i.e., ANTILOPE). This study provides a preliminary evaluation of radar-based QPE at local scale, suggesting that merged products are invaluable for applications at very high resolution. The results obtained underline the importance of using high-density rain-gauge networks to obtain information at high spatial and temporal resolution, for better understanding of local rainfall variation, to calibrate remotely sensed rainfall products. |
---|---|
ISSN: | 1687-9309 1687-9317 |