Contrast and Predictability of Island‐Scale El Niño Influences on Hawaii Wave Climate

Abstract The El Niño‐Southern Oscillation (ENSO) influences ocean wave activity across the Pacific, but its effects on island shores are modulated by local weather and selective sheltering of multi‐modal seas. Utilizing 41 years of high‐resolution wave hindcasts, we decipher the season‐ and locality...

Full description

Saved in:
Bibliographic Details
Main Authors: Sen Zhao, Ning Li, Fei‐Fei Jin, Kwok Fai Cheung, Zhaoqing Yang
Format: Article
Language:English
Published: Wiley 2025-04-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2024GL113127
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The El Niño‐Southern Oscillation (ENSO) influences ocean wave activity across the Pacific, but its effects on island shores are modulated by local weather and selective sheltering of multi‐modal seas. Utilizing 41 years of high‐resolution wave hindcasts, we decipher the season‐ and locality‐dependent connections between ENSO and wave patterns around the Hawaiian Islands. The north and west‐facing shores, exposed to energetic northwest swells during boreal winters, experience the most pronounced ENSO‐related variability, with increased high‐surf activity during El Niño years. While the year‐round trade wind waves exhibit moderate correlation with ENSO, the basin‐wide climate influence is masked by locally accelerated trade winds in channels and around large headlands. The remarkable global‐to‐local pathway through the high‐resolution hindcast enables development of an ENSO‐based semi‐empirical wave model to statistically describe and predict severe wave conditions on vulnerable shores with potential application in coastal risk management and hazard mitigation for Pacific Islands and beyond.
ISSN:0094-8276
1944-8007