On Randic, Seidel, and Laplacian Energy of NEPS Graph

Let Z be the simple graph; then, we can obtain the energy EZ of a graph Z by taking the absolute sum of the eigenvalues of the adjacency matrix of Z. In this research, we have computed different energy invariants of the noncompleted extended P-Sum (NEPS) of graph Zi. In particular, we investigate th...

Full description

Saved in:
Bibliographic Details
Main Authors: Kun Han, S. Ahmad, Syed Ajaz K. Kirmani, M. K. Siddiqui, Y. Ali, E. Bashier
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2022/6553359
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850231699824181248
author Kun Han
S. Ahmad
Syed Ajaz K. Kirmani
M. K. Siddiqui
Y. Ali
E. Bashier
author_facet Kun Han
S. Ahmad
Syed Ajaz K. Kirmani
M. K. Siddiqui
Y. Ali
E. Bashier
author_sort Kun Han
collection DOAJ
description Let Z be the simple graph; then, we can obtain the energy EZ of a graph Z by taking the absolute sum of the eigenvalues of the adjacency matrix of Z. In this research, we have computed different energy invariants of the noncompleted extended P-Sum (NEPS) of graph Zi. In particular, we investigate the Randic, Seidel, and Laplacian energies of the NEPS of path graph Pni with any base ℬ. Here, n denotes the number of vertices and i denotes the number of copies of path graph Pn. Some of the results depend on the number of zeroes in base elements, for which we use the notation j.
format Article
id doaj-art-028b9778b4d54bc3b239afc8e3708cd6
institution OA Journals
issn 2314-4785
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-028b9778b4d54bc3b239afc8e3708cd62025-08-20T02:03:27ZengWileyJournal of Mathematics2314-47852022-01-01202210.1155/2022/6553359On Randic, Seidel, and Laplacian Energy of NEPS GraphKun Han0S. Ahmad1Syed Ajaz K. Kirmani2M. K. Siddiqui3Y. Ali4E. Bashier5School of ManagementDepartment of MathematicsDepartment of Electrical EngineeringDepartment of MathematicsDepartment of MathematicsDepartment of Applied MathematicsLet Z be the simple graph; then, we can obtain the energy EZ of a graph Z by taking the absolute sum of the eigenvalues of the adjacency matrix of Z. In this research, we have computed different energy invariants of the noncompleted extended P-Sum (NEPS) of graph Zi. In particular, we investigate the Randic, Seidel, and Laplacian energies of the NEPS of path graph Pni with any base ℬ. Here, n denotes the number of vertices and i denotes the number of copies of path graph Pn. Some of the results depend on the number of zeroes in base elements, for which we use the notation j.http://dx.doi.org/10.1155/2022/6553359
spellingShingle Kun Han
S. Ahmad
Syed Ajaz K. Kirmani
M. K. Siddiqui
Y. Ali
E. Bashier
On Randic, Seidel, and Laplacian Energy of NEPS Graph
Journal of Mathematics
title On Randic, Seidel, and Laplacian Energy of NEPS Graph
title_full On Randic, Seidel, and Laplacian Energy of NEPS Graph
title_fullStr On Randic, Seidel, and Laplacian Energy of NEPS Graph
title_full_unstemmed On Randic, Seidel, and Laplacian Energy of NEPS Graph
title_short On Randic, Seidel, and Laplacian Energy of NEPS Graph
title_sort on randic seidel and laplacian energy of neps graph
url http://dx.doi.org/10.1155/2022/6553359
work_keys_str_mv AT kunhan onrandicseidelandlaplacianenergyofnepsgraph
AT sahmad onrandicseidelandlaplacianenergyofnepsgraph
AT syedajazkkirmani onrandicseidelandlaplacianenergyofnepsgraph
AT mksiddiqui onrandicseidelandlaplacianenergyofnepsgraph
AT yali onrandicseidelandlaplacianenergyofnepsgraph
AT ebashier onrandicseidelandlaplacianenergyofnepsgraph