Quantum <i>κ</i>-Entropy: A Quantum Computational Approach

A novel approach to the quantum version of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy that incorporates it into the conceptual,...

Full description

Saved in:
Bibliographic Details
Main Authors: Demosthenes Ellinas, Giorgio Kaniadakis
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/5/482
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel approach to the quantum version of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy that incorporates it into the conceptual, mathematical and operational framework of quantum computation is put forward. Various alternative expressions stemming from its definition emphasizing computational and algorithmic aspects are worked out: First, for the case of canonical Gibbs states, it is shown that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy is cast in the form of an expectation value for an observable that is determined. Also, an operational method named “the two-temperatures protocol” is introduced that provides a way to obtain the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy in terms of the partition functions of two auxiliary Gibbs states with temperatures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-shifted above, the hot-system, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-shifted below, the cold-system, with respect to the original system temperature. That protocol provides physical procedures for evaluating entropy for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>. Second, two novel additional ways of expressing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy are further introduced. One determined by a non-negativity definite quantum channel, with Kraus-like operator sum representation and its extension to a unitary dilation via a qubit ancilla. Another given as a simulation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy via the quantum circuit of a generalized version of the Hadamard test. Third, a simple inter-relation of the von Neumann entropy and the quantum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy is worked out and a bound of their difference is evaluated and interpreted. Also the effect on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy of quantum noise, implemented as a random unitary quantum channel acting in the system’s density matrix, is addressed and a bound on the entropy, depending on the spectral properties of the noisy channel and the system’s density matrix, is evaluated. The results obtained amount to a quantum computational tool-box for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-entropy that enhances its applicability in practical problems.
ISSN:1099-4300