Multiscale deformation analysis by Cauchy-Navier wavelets

A geoscientifically relevant wavelet approach is established for the classical (inner) displacement problem corresponding to a regular surface (such as sphere, ellipsoid, and actual earth surface). Basic tools are the limit and jump relations of (linear) elastostatics. Scaling functions and wavelets...

Full description

Saved in:
Bibliographic Details
Main Authors: M. K. Abeyratne, W. Freeden, C. Mayer
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/S1110757X03206033
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561262564737024
author M. K. Abeyratne
W. Freeden
C. Mayer
author_facet M. K. Abeyratne
W. Freeden
C. Mayer
author_sort M. K. Abeyratne
collection DOAJ
description A geoscientifically relevant wavelet approach is established for the classical (inner) displacement problem corresponding to a regular surface (such as sphere, ellipsoid, and actual earth surface). Basic tools are the limit and jump relations of (linear) elastostatics. Scaling functions and wavelets are formulated within the framework of the vectorial Cauchy-Navier equation. Based on appropriate numerical integration rules, a pyramid scheme is developed providing fast wavelet transform (FWT). Finally, multiscale deformation analysis is investigated numerically for the case of a spherical boundary.
format Article
id doaj-art-025bf08f7f02473f84737e59fd504e87
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-025bf08f7f02473f84737e59fd504e872025-02-03T01:25:29ZengWileyJournal of Applied Mathematics1110-757X1687-00422003-01-0120031260564510.1155/S1110757X03206033Multiscale deformation analysis by Cauchy-Navier waveletsM. K. Abeyratne0W. Freeden1C. Mayer2Geomathematics Group, Department of Mathematics, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern 67653, GermanyGeomathematics Group, Department of Mathematics, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern 67653, GermanyGeomathematics Group, Department of Mathematics, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern 67653, GermanyA geoscientifically relevant wavelet approach is established for the classical (inner) displacement problem corresponding to a regular surface (such as sphere, ellipsoid, and actual earth surface). Basic tools are the limit and jump relations of (linear) elastostatics. Scaling functions and wavelets are formulated within the framework of the vectorial Cauchy-Navier equation. Based on appropriate numerical integration rules, a pyramid scheme is developed providing fast wavelet transform (FWT). Finally, multiscale deformation analysis is investigated numerically for the case of a spherical boundary.http://dx.doi.org/10.1155/S1110757X03206033
spellingShingle M. K. Abeyratne
W. Freeden
C. Mayer
Multiscale deformation analysis by Cauchy-Navier wavelets
Journal of Applied Mathematics
title Multiscale deformation analysis by Cauchy-Navier wavelets
title_full Multiscale deformation analysis by Cauchy-Navier wavelets
title_fullStr Multiscale deformation analysis by Cauchy-Navier wavelets
title_full_unstemmed Multiscale deformation analysis by Cauchy-Navier wavelets
title_short Multiscale deformation analysis by Cauchy-Navier wavelets
title_sort multiscale deformation analysis by cauchy navier wavelets
url http://dx.doi.org/10.1155/S1110757X03206033
work_keys_str_mv AT mkabeyratne multiscaledeformationanalysisbycauchynavierwavelets
AT wfreeden multiscaledeformationanalysisbycauchynavierwavelets
AT cmayer multiscaledeformationanalysisbycauchynavierwavelets