Forecasting Chlorophyll-a in the Murray–Darling Basin Using Remote Sensing
Reliable forecasts of large-scale chlorophyll-a (Chl-a) levels one week ahead in the Murray–Darling Basin are essential for water resources management, as increasing Chl-a levels in water bodies indicate possible harmful algal blooms, a serious threat for freshwater security. A lack of high-resoluti...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/10/1684 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Reliable forecasts of large-scale chlorophyll-a (Chl-a) levels one week ahead in the Murray–Darling Basin are essential for water resources management, as increasing Chl-a levels in water bodies indicate possible harmful algal blooms, a serious threat for freshwater security. A lack of high-resolution data in space and time is a major constraint for delivering early warnings. To address data scarcity, we developed a forecasting model integrating remote sensing data and time-series modelling. Using in situ Chl-a measurements from Murray–Darling Basin water bodies, we locally recalibrated a two-band ratio algorithm, namely the Normalized Difference Chlorophyll Index (NDCI), from Sentinel-2 data to derive Chl-a levels. The recalibrated model significantly improved the accuracy of high Chl-a estimates in our dataset after mitigating data heteroscedasticity. Building on these improved satellite-derived Chl-a estimates, we developed a time-series model for forecasting weekly Chl-a levels including quantification of forecast uncertainty through prediction intervals. The developed model, validated at eight sites for 2021–2022 data, performed well at shorter lead times, showing R<sup>2</sup> = 0.41 and RMSE = 8.1 μg/L for overall performance at a one-week lead time. The prediction intervals generally aligned well with nominal levels, demonstrating their reliability. This study provides a valuable tool for the water managers/decision-makers to issue early warnings of algal blooms in the Murray–Darling Basin. |
|---|---|
| ISSN: | 2072-4292 |