Perbandingan Kinerja Naïve Bayes dan Random Forest dalam Mendeteksi Berita Palsu

Fake news has become a serious problem in today's digital era. The existence of fake news can have various negative impacts, including the spread of misinformation, social unrest, and economic losses. This study compares the performance of Naïve Bayes and Random Forest classification methods i...

Full description

Saved in:
Bibliographic Details
Main Authors: William William, Teny Handhayani
Format: Article
Language:English
Published: Universitas Islam Negeri Sunan Kalijaga Yogyakarta 2025-05-01
Series:JISKA (Jurnal Informatika Sunan Kalijaga)
Subjects:
Online Access:https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/4336
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849735716764909568
author William William
Teny Handhayani
author_facet William William
Teny Handhayani
author_sort William William
collection DOAJ
description Fake news has become a serious problem in today's digital era. The existence of fake news can have various negative impacts, including the spread of misinformation, social unrest, and economic losses. This study compares the performance of Naïve Bayes and Random Forest classification methods in detecting fake news. Both methods were evaluated on a news dataset comprising 44,898 samples. It uses public data from the Kaggle repository. The news samples are represented by four features: title, news content, subject, and news date. This data is then subjected to cleaning, stemming, tokenization, and feature extraction. The results indicate that the Random Forest method outperforms the Naïve Bayes method. The Random Forest method has an accuracy of 99%, while the Naïve Bayes method has an accuracy of 96%. In general, this research demonstrates that the Random Forest method can be a viable alternative for detecting fake news.
format Article
id doaj-art-0249d0620ec84d3d9232d29facd7bb39
institution DOAJ
issn 2527-5836
2528-0074
language English
publishDate 2025-05-01
publisher Universitas Islam Negeri Sunan Kalijaga Yogyakarta
record_format Article
series JISKA (Jurnal Informatika Sunan Kalijaga)
spelling doaj-art-0249d0620ec84d3d9232d29facd7bb392025-08-20T03:07:28ZengUniversitas Islam Negeri Sunan Kalijaga YogyakartaJISKA (Jurnal Informatika Sunan Kalijaga)2527-58362528-00742025-05-01102Perbandingan Kinerja Naïve Bayes dan Random Forest dalam Mendeteksi Berita PalsuWilliam William0Teny Handhayani1Universitas TarumanagaraUniversitas Tarumanagara Fake news has become a serious problem in today's digital era. The existence of fake news can have various negative impacts, including the spread of misinformation, social unrest, and economic losses. This study compares the performance of Naïve Bayes and Random Forest classification methods in detecting fake news. Both methods were evaluated on a news dataset comprising 44,898 samples. It uses public data from the Kaggle repository. The news samples are represented by four features: title, news content, subject, and news date. This data is then subjected to cleaning, stemming, tokenization, and feature extraction. The results indicate that the Random Forest method outperforms the Naïve Bayes method. The Random Forest method has an accuracy of 99%, while the Naïve Bayes method has an accuracy of 96%. In general, this research demonstrates that the Random Forest method can be a viable alternative for detecting fake news. https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/4336Random ForestNaive Bayes AlgorithmText ClassificationFake News DetectionMachine Learning
spellingShingle William William
Teny Handhayani
Perbandingan Kinerja Naïve Bayes dan Random Forest dalam Mendeteksi Berita Palsu
JISKA (Jurnal Informatika Sunan Kalijaga)
Random Forest
Naive Bayes Algorithm
Text Classification
Fake News Detection
Machine Learning
title Perbandingan Kinerja Naïve Bayes dan Random Forest dalam Mendeteksi Berita Palsu
title_full Perbandingan Kinerja Naïve Bayes dan Random Forest dalam Mendeteksi Berita Palsu
title_fullStr Perbandingan Kinerja Naïve Bayes dan Random Forest dalam Mendeteksi Berita Palsu
title_full_unstemmed Perbandingan Kinerja Naïve Bayes dan Random Forest dalam Mendeteksi Berita Palsu
title_short Perbandingan Kinerja Naïve Bayes dan Random Forest dalam Mendeteksi Berita Palsu
title_sort perbandingan kinerja naive bayes dan random forest dalam mendeteksi berita palsu
topic Random Forest
Naive Bayes Algorithm
Text Classification
Fake News Detection
Machine Learning
url https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/4336
work_keys_str_mv AT williamwilliam perbandingankinerjanaivebayesdanrandomforestdalammendeteksiberitapalsu
AT tenyhandhayani perbandingankinerjanaivebayesdanrandomforestdalammendeteksiberitapalsu