Weyl transforms associated with the Riemann-Liouville operator

For the Riemann-Liouville transform ℛα, α∈ℝ+, associated with singular partial differential operators, we define and study the Weyl transforms Wσ connected with ℛα, where σ is a symbol in Sm, m∈ℝ. We give criteria in terms of σ for boundedness and compactness of the transform Wσ....

Full description

Saved in:
Bibliographic Details
Main Authors: N. B. Hamadi, L. T. Rachdi
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/94768
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551506957565952
author N. B. Hamadi
L. T. Rachdi
author_facet N. B. Hamadi
L. T. Rachdi
author_sort N. B. Hamadi
collection DOAJ
description For the Riemann-Liouville transform ℛα, α∈ℝ+, associated with singular partial differential operators, we define and study the Weyl transforms Wσ connected with ℛα, where σ is a symbol in Sm, m∈ℝ. We give criteria in terms of σ for boundedness and compactness of the transform Wσ.
format Article
id doaj-art-023c9cc8c21a419b9093abf8be0fad68
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2006-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-023c9cc8c21a419b9093abf8be0fad682025-02-03T06:01:12ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/9476894768Weyl transforms associated with the Riemann-Liouville operatorN. B. Hamadi0L. T. Rachdi1Department of Mathematics, Faculty of Sciences of Tunis, University Tunis, El Manar 2092, Tunis, TunisiaDepartment of Mathematics, Faculty of Sciences of Tunis, University Tunis, El Manar 2092, Tunis, TunisiaFor the Riemann-Liouville transform ℛα, α∈ℝ+, associated with singular partial differential operators, we define and study the Weyl transforms Wσ connected with ℛα, where σ is a symbol in Sm, m∈ℝ. We give criteria in terms of σ for boundedness and compactness of the transform Wσ.http://dx.doi.org/10.1155/IJMMS/2006/94768
spellingShingle N. B. Hamadi
L. T. Rachdi
Weyl transforms associated with the Riemann-Liouville operator
International Journal of Mathematics and Mathematical Sciences
title Weyl transforms associated with the Riemann-Liouville operator
title_full Weyl transforms associated with the Riemann-Liouville operator
title_fullStr Weyl transforms associated with the Riemann-Liouville operator
title_full_unstemmed Weyl transforms associated with the Riemann-Liouville operator
title_short Weyl transforms associated with the Riemann-Liouville operator
title_sort weyl transforms associated with the riemann liouville operator
url http://dx.doi.org/10.1155/IJMMS/2006/94768
work_keys_str_mv AT nbhamadi weyltransformsassociatedwiththeriemannliouvilleoperator
AT ltrachdi weyltransformsassociatedwiththeriemannliouvilleoperator