Ionospheric Electron Density and Temperature Profiles Using Ionosonde-like Data and Machine Learning

Predicting the behaviour of the Earth’s ionosphere is crucial for the ground-based and spaceborne technologies that rely on it. This paper presents a novel way of inferring ionospheric electron density profiles and electron temperature profiles using machine learning. The analysis is based on the Ne...

Full description

Saved in:
Bibliographic Details
Main Authors: Jean de Dieu Nibigira, Richard Marchand
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Plasma
Subjects:
Online Access:https://www.mdpi.com/2571-6182/8/2/24
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predicting the behaviour of the Earth’s ionosphere is crucial for the ground-based and spaceborne technologies that rely on it. This paper presents a novel way of inferring ionospheric electron density profiles and electron temperature profiles using machine learning. The analysis is based on the Nearest Neighbour (NNB) and Radial Basis Function (RBF) regression models. Synthetic data sets used to train and validate these two inference models are constructed using the International Reference Ionosphere (IRI 2020) model with randomly chosen years (1987–2022), months (1–12), days (1–31), latitudes (−60 to 60°), longitudes (0, 360°), and times (0–23 h), at altitudes ranging from 95 to 600 km. The NNB and RBF models use the constructed ionosonde-like profiles to infer complete ISR-like profiles. The results show that the inference of ionospheric electron density profiles is better with the NNB model than with the RBF model, while the RBF model is better at inferring the electron temperature profiles. A major and unexpected finding of this research is the ability of the two models to infer full electron temperature profiles that are not provided by ionosondes using the same truncated electron density data set used to infer electron density profiles. NNB and RBF models generally over- or underestimate the inferred electron density and electron temperature values, especially at higher altitudes, but they tend to produce good matches at lower altitudes. Additionally, maximum absolute relative errors for electron density and temperature inferences are found at higher altitudes for both NNB and RBF models.
ISSN:2571-6182