Lipschitz Analysis of g-Phase Retrievable Frames
A g-phase retrievable frame is a $\lambda$-phase retrievable frame in finite dimensional Hilbert space $\mathcal{H}_n$, where $\lambda$ is an special function, which is called phase coefficient function. In this paper we study the Lipschitz analysis of the nonlinear map $\alpha_{\lambda,{\mathcal{F}...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Maragheh
2025-01-01
|
Series: | Sahand Communications in Mathematical Analysis |
Subjects: | |
Online Access: | https://scma.maragheh.ac.ir/article_718214_229cd25355cfe8aba7f136a5459f92f2.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A g-phase retrievable frame is a $\lambda$-phase retrievable frame in finite dimensional Hilbert space $\mathcal{H}_n$, where $\lambda$ is an special function, which is called phase coefficient function. In this paper we study the Lipschitz analysis of the nonlinear map $\alpha_{\lambda,{\mathcal{F}}}:\widehat{\mathcal{H}_n}\longrightarrow\mathbb{F}^m, \ \ \ \alpha_{\lambda,{\mathcal{F}}}(\hat{x}):=\begin{bmatrix}\lambda\left( \left\langle {x,f_k}\right\rangle\right)\end{bmatrix}_{1\leq k\leq m}$, where $\widehat{\mathcal{H}_n}$ is the quotient space corresponding to a special equivalence relation on $\mathcal{H}_n$ with respect to phase coefficient function $\lambda$, $\mathcal{F}=\{f_k\}_{k=1}^m$ is a $\lambda$-phase retrievable frame for $\mathcal{H}_n$, $\mathbb{F}=\mathbb{R}$ for real Hilbert space $\mathcal{H}_n$ and $\mathbb{F}=\mathbb{C}$ for complex Hilbert space $\mathcal{H}_n$. |
---|---|
ISSN: | 2322-5807 2423-3900 |