Study on Strength and Microstructure of Cement-Based Materials Containing Combination Mineral Admixtures

The compressive strength of complex binders containing two or three blended mineral admixtures in terms of glass powder (GP), limestone powder (LP), and steel slag powder (SP) was determined by a battery solution type compressive testing machine. The morphology and microstructure characteristics of...

Full description

Saved in:
Bibliographic Details
Main Authors: Meijuan Rao, Jianpeng Wei, Zhiyang Gao, Wei Zhou, Qiaoling Li, Shuhua Liu
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2016/7243670
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The compressive strength of complex binders containing two or three blended mineral admixtures in terms of glass powder (GP), limestone powder (LP), and steel slag powder (SP) was determined by a battery solution type compressive testing machine. The morphology and microstructure characteristics of complex binder hydration products were also studied by microscopic analysis methods, such as XRD, TG-DTA, and SEM. The mechanical properties of the cement-based materials were analyzed to reveal the most appropriate mineral admixture type and content. The early sample strength development with GP was very slow, but it rapidly grew at later stages. The micro aggregate effect and pozzolanic reaction mutually occurred in the mineral admixture. In the early stage, the micro aggregate effect reduced paste porosity and the small particles connected with the cement hydration products to enhance its strength. In the later stage, the pozzolanic reaction of some components in the complex powder occurred and consumed part of the calcium hydroxide to form C-S-H gel, thus improving the hydration environment. Also, the produced C-S-H gel made the structure more compact, which improved the structure’s strength.
ISSN:1687-8434
1687-8442