A Cross-Regional Load Forecasting Method Based on a Pseudo-Distributed Federated Learning Strategy

Accurate load forecasting serves as the core foundation for grid planning and operations. Traditional load forecasting methods often rely solely on historical load data from a single region for training, making the models region-specific and leading to significant accuracy degradation when applied t...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinsong Deng, Shaotang Cai, Weinong Wu, Rong Jiang, Hongyu Deng, Jinhua Ma, Yonghang Luo
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10857325/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate load forecasting serves as the core foundation for grid planning and operations. Traditional load forecasting methods often rely solely on historical load data from a single region for training, making the models region-specific and leading to significant accuracy degradation when applied to other regions. This limits the generalization ability of these models to cross-regional load forecasting tasks. To address this issue, this study proposed a collaborative training strategy based on pseudo-distributed federated learning. Inspired by the pseudo-distributed concept, this strategy builds multiple sub-models by serially training load datasets from different regions on the same server. After a certain number of local epochs for each sub-model, parameter aggregation was performed. The aggregated parameters are then updated into each sub-model, and this process is repeated during each global epoch until the model converges, ultimately forming a global model capable of forecasting loads across multiple regions. Experiments demonstrated that this strategy exhibited exceptional generalization ability across various deep learning models, federated learning methods, and datasets.
ISSN:2169-3536