Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere

In this note, we study non-uniqueness for minimizing harmonic maps from $B^3$ to $§^2$. We show that every boundary map can be modified to a boundary map that admits multiple minimizers of the Dirichlet energy by a small $W^{1,p}$-change for $p<2$. This strengthens a remark by the second-named au...

Full description

Saved in:
Bibliographic Details
Main Authors: Detaille, Antoine, Mazowiecka, Katarzyna
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.648/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206128435265536
author Detaille, Antoine
Mazowiecka, Katarzyna
author_facet Detaille, Antoine
Mazowiecka, Katarzyna
author_sort Detaille, Antoine
collection DOAJ
description In this note, we study non-uniqueness for minimizing harmonic maps from $B^3$ to $§^2$. We show that every boundary map can be modified to a boundary map that admits multiple minimizers of the Dirichlet energy by a small $W^{1,p}$-change for $p<2$. This strengthens a remark by the second-named author and Strzelecki. The main novel ingredient is a homotopy construction, which is the answer to an easier variant of a challenging question regarding the existence of a norm control for homotopies between $ W^{1,p} $ maps.
format Article
id doaj-art-01e42eff0a2645c8a2a9a8a1d156e49c
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-01e42eff0a2645c8a2a9a8a1d156e49c2025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111357136410.5802/crmath.64810.5802/crmath.648Generic non-uniqueness of minimizing harmonic maps from a ball to a sphereDetaille, Antoine0Mazowiecka, Katarzyna1Universite Claude Bernard Lyon 1, ICJ UMR5208, CNRS, École Centrale de Lyon, INSA Lyon, Université Jean Monnet, 69622 Villeurbanne, France.Institute of Mathematics,University of Warsaw, Banacha 2, 02-097 Warszawa, PolandIn this note, we study non-uniqueness for minimizing harmonic maps from $B^3$ to $§^2$. We show that every boundary map can be modified to a boundary map that admits multiple minimizers of the Dirichlet energy by a small $W^{1,p}$-change for $p<2$. This strengthens a remark by the second-named author and Strzelecki. The main novel ingredient is a homotopy construction, which is the answer to an easier variant of a challenging question regarding the existence of a norm control for homotopies between $ W^{1,p} $ maps.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.648/Harmonic mapshomotopy theory
spellingShingle Detaille, Antoine
Mazowiecka, Katarzyna
Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
Comptes Rendus. Mathématique
Harmonic maps
homotopy theory
title Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
title_full Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
title_fullStr Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
title_full_unstemmed Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
title_short Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
title_sort generic non uniqueness of minimizing harmonic maps from a ball to a sphere
topic Harmonic maps
homotopy theory
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.648/
work_keys_str_mv AT detailleantoine genericnonuniquenessofminimizingharmonicmapsfromaballtoasphere
AT mazowieckakatarzyna genericnonuniquenessofminimizingharmonicmapsfromaballtoasphere