Robust Stability for Nonlinear Systems with Time-Varying Delay and Uncertainties via the H∞ Quasi-Sliding Mode Control

This paper considers the problem of the robust stability for the nonlinear system with time-varying delay and parameters uncertainties. Based on the H∞ theorem, Lyapunov-Krasovskii theory, and linear matrix inequality (LMI) optimization technique, the H∞ quasi-sliding mode controller and switching f...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi-You Hou, Zhang-Lin Wan
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2014/897179
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers the problem of the robust stability for the nonlinear system with time-varying delay and parameters uncertainties. Based on the H∞ theorem, Lyapunov-Krasovskii theory, and linear matrix inequality (LMI) optimization technique, the H∞ quasi-sliding mode controller and switching function are developed such that the nonlinear system is asymptotically stable in the quasi-sliding mode and satisfies the disturbance attenuation (H∞-norm performance). The effectiveness and accuracy of the proposed methods are shown in numerical simulations.
ISSN:1687-5869
1687-5877