Systematic and Quantitative Assessment of Reduced Model Resolution on the Transient Structural Response Under Wind Load
The wind-induced response of structures is typically studied in wind tunnels either on scaled models or using numerical approaches under similar transient load conditions. In early design phases—where the potential for impactful change is most significant—information is often limited. As a result, s...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/3/1588 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850199380724809728 |
|---|---|
| author | Anoop Kodakkal Máté Péntek Kai-Uwe Bletzinger Roland Wüchner Felix Weber |
| author_facet | Anoop Kodakkal Máté Péntek Kai-Uwe Bletzinger Roland Wüchner Felix Weber |
| author_sort | Anoop Kodakkal |
| collection | DOAJ |
| description | The wind-induced response of structures is typically studied in wind tunnels either on scaled models or using numerical approaches under similar transient load conditions. In early design phases—where the potential for impactful change is most significant—information is often limited. As a result, studies are frequently conducted on simplified or reduced-resolution structural models. Typical applications for dimensionally reduced engineering models include early design phases, deciding on the need for high-fidelity analyses, and verifying wind tunnel models, which are often constructed using beams with lumped masses. In this contribution, the validity of these approaches is tested. Various limitations intrinsically arising from such modeling assumptions, showcased on a generic high-rise under dynamic wind load conditions, are highlighted. The systematic parametric analysis focuses on the variations in transient structural responses, particularly displacement and accelerations at the top of a building. Various wind loading cases are studied, with the reduction of the resolution taking place either in the original or in modal space. Results indicate that a considerable reduction is possible, but characteristic design values tend to deteriorate in cases of a high reduction, particularly when higher mode contributions are truncated. It is observed that the top-floor acceleration and displacement can be captured with considerable accuracy with three lumped masses for tall buildings. It is critical to study the impact of simplifying models starting at the highest level of detail possible. Here, a three-DoF model was able to capture the displacement up to a deviation of 11% and accelerations up to 20%. These approximate models are useful for initial design stages, optimization, uncertainty quantification, etc., where fast, cheap, and moderately accurate model evaluations are necessary. |
| format | Article |
| id | doaj-art-017ba914459a4e949da022d133707ed3 |
| institution | OA Journals |
| issn | 2076-3417 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Applied Sciences |
| spelling | doaj-art-017ba914459a4e949da022d133707ed32025-08-20T02:12:38ZengMDPI AGApplied Sciences2076-34172025-02-01153158810.3390/app15031588Systematic and Quantitative Assessment of Reduced Model Resolution on the Transient Structural Response Under Wind LoadAnoop Kodakkal0Máté Péntek1Kai-Uwe Bletzinger2Roland Wüchner3Felix Weber4Lehrstuhl für Statik und Dynamik, Technische Universität München, Arcistr. 21, 80333 Munich, GermanyLehrstuhl für Statik und Dynamik, Technische Universität München, Arcistr. 21, 80333 Munich, GermanyLehrstuhl für Statik und Dynamik, Technische Universität München, Arcistr. 21, 80333 Munich, GermanyLehrstuhl für Statik und Dynamik, Technische Universität München, Arcistr. 21, 80333 Munich, GermanyMaurer Switzerland GmbH, Grossplatzstraße 24, 8118 Pfaffhausen, SwitzerlandThe wind-induced response of structures is typically studied in wind tunnels either on scaled models or using numerical approaches under similar transient load conditions. In early design phases—where the potential for impactful change is most significant—information is often limited. As a result, studies are frequently conducted on simplified or reduced-resolution structural models. Typical applications for dimensionally reduced engineering models include early design phases, deciding on the need for high-fidelity analyses, and verifying wind tunnel models, which are often constructed using beams with lumped masses. In this contribution, the validity of these approaches is tested. Various limitations intrinsically arising from such modeling assumptions, showcased on a generic high-rise under dynamic wind load conditions, are highlighted. The systematic parametric analysis focuses on the variations in transient structural responses, particularly displacement and accelerations at the top of a building. Various wind loading cases are studied, with the reduction of the resolution taking place either in the original or in modal space. Results indicate that a considerable reduction is possible, but characteristic design values tend to deteriorate in cases of a high reduction, particularly when higher mode contributions are truncated. It is observed that the top-floor acceleration and displacement can be captured with considerable accuracy with three lumped masses for tall buildings. It is critical to study the impact of simplifying models starting at the highest level of detail possible. Here, a three-DoF model was able to capture the displacement up to a deviation of 11% and accelerations up to 20%. These approximate models are useful for initial design stages, optimization, uncertainty quantification, etc., where fast, cheap, and moderately accurate model evaluations are necessary.https://www.mdpi.com/2076-3417/15/3/1588wind loadingstructural modelingstructural responsenumerical methodsreduced-resolution modelscomputational wind engineering |
| spellingShingle | Anoop Kodakkal Máté Péntek Kai-Uwe Bletzinger Roland Wüchner Felix Weber Systematic and Quantitative Assessment of Reduced Model Resolution on the Transient Structural Response Under Wind Load Applied Sciences wind loading structural modeling structural response numerical methods reduced-resolution models computational wind engineering |
| title | Systematic and Quantitative Assessment of Reduced Model Resolution on the Transient Structural Response Under Wind Load |
| title_full | Systematic and Quantitative Assessment of Reduced Model Resolution on the Transient Structural Response Under Wind Load |
| title_fullStr | Systematic and Quantitative Assessment of Reduced Model Resolution on the Transient Structural Response Under Wind Load |
| title_full_unstemmed | Systematic and Quantitative Assessment of Reduced Model Resolution on the Transient Structural Response Under Wind Load |
| title_short | Systematic and Quantitative Assessment of Reduced Model Resolution on the Transient Structural Response Under Wind Load |
| title_sort | systematic and quantitative assessment of reduced model resolution on the transient structural response under wind load |
| topic | wind loading structural modeling structural response numerical methods reduced-resolution models computational wind engineering |
| url | https://www.mdpi.com/2076-3417/15/3/1588 |
| work_keys_str_mv | AT anoopkodakkal systematicandquantitativeassessmentofreducedmodelresolutiononthetransientstructuralresponseunderwindload AT matepentek systematicandquantitativeassessmentofreducedmodelresolutiononthetransientstructuralresponseunderwindload AT kaiuwebletzinger systematicandquantitativeassessmentofreducedmodelresolutiononthetransientstructuralresponseunderwindload AT rolandwuchner systematicandquantitativeassessmentofreducedmodelresolutiononthetransientstructuralresponseunderwindload AT felixweber systematicandquantitativeassessmentofreducedmodelresolutiononthetransientstructuralresponseunderwindload |