Closed-eye intraocular pressure and eye movement monitoring via a stretchable bimodal contact lens

Abstract Chronic ophthalmic diseases are multivariate, time-varying, and degenerative. Smart contact lenses have emerged as a scalable platform for noninvasive ocular signal detection and disease diagnosis. However, real-time monitoring and decoupling of multiple ocular parameters, particularly when...

Full description

Saved in:
Bibliographic Details
Main Authors: Xingyi Gan, Guang Yao, Cunbo Li, Yufeng Mu, Maowen Xie, Chenzheng Zhou, Peisi Li, Qiwei Dong, Ke Chen, Kangning Zhao, Min Gao, Taisong Pan, Fang Lu, Dezhong Yao, Peng Xu, Yuan Lin
Format: Article
Language:English
Published: Nature Publishing Group 2025-05-01
Series:Microsystems & Nanoengineering
Subjects:
Online Access:https://doi.org/10.1038/s41378-025-00946-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Chronic ophthalmic diseases are multivariate, time-varying, and degenerative. Smart contact lenses have emerged as a scalable platform for noninvasive ocular signal detection and disease diagnosis. However, real-time monitoring and decoupling of multiple ocular parameters, particularly when the eyes are closed, remain challenging in clinical medicine. In this work, we propose a stretchable bimodal contact lens (BCL) amalgamating self-decoupled electromagnetic capacitive intraocular pressure (CIOP) and magnetic eye movement (MEM) monitoring components. The sandwich-integrated BCL can be intimately attached to the eyeball, enabling closed-eye, wireless, and precise signal acquisition without interference. During the eye open and closed, the serpentine-geometry CIOP unit was validated on a rabbit model, achieving supered resolution (1 mmHg) and sensitivity (≥0.22 MHz mmHg−1) for reversible hypo- to hyper-IOP fluctuations. Ex vivo and in vivo MEM monitoring, based on composition-optimized magnetic interlayer film, demonstrated exceptional accuracy (≥97.25%) with eyes open and closed, surpassing existing methods. The collected CIOP and MEM data could be wirelessly aggregated and transmitted to portable devices via integrated acquisition modules within frame glasses for real-time eye healthcare. Emerging noninvasive and bimodal modalities reconcile the trade-off between minimal discomfort, eye status, and reliable measurement, spurring the widespread adoption of the integrated monitoring system for continuous ocular health monitoring.
ISSN:2055-7434