Cosmic muon flux attenuation methods for superconducting qubit experiments

We propose and demonstrate two practical mitigation methods to attenuate the cosmic muon flux, compatible with experiments involving superconducting qubits: shallow underground sites and device orientation. Using a specifically-built cosmic muon detector, we identify underground sites, widely presen...

Full description

Saved in:
Bibliographic Details
Main Authors: Elia Bertoldo, Victor Pérez Sánchez, Maria Martínez, Manel Martínez, Hawraa Khalife, Pol Forn-Díaz
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/adaedc
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose and demonstrate two practical mitigation methods to attenuate the cosmic muon flux, compatible with experiments involving superconducting qubits: shallow underground sites and device orientation. Using a specifically-built cosmic muon detector, we identify underground sites, widely present in urban environments, where significant attenuation of cosmic muon flux, up to a factor 35 for 100 m depths, can be attained. Furthermore, we employ two germanium wafers in an above-ground laboratory, each equipped with a particle sensor, to show how the orientation of a chip with respect to the sky affects the amount and type of energy deposited on the substrate by ionizing radiation. We observe that the horizontal detector sees more counts at lower energy, while the vertical one is impacted by more particles at higher energy. The methods here described proposed ways to directly understand and reduce the effects of cosmic rays on qubits by attenuating the source of this type of decoherence, complementing existing on-chip mitigation strategies. We expect that both on-chip and off-chip methods combined will become ubiquitous in quantum technologies based on superconducting qubit circuits.
ISSN:1367-2630