Structural insights into the catalytic mechanism of the microcystin tailoring enzyme McyI
Abstract The most common cyanotoxin microcystin is a cyclic heptapeptide produced by non-ribosomal peptide-polyketide synthetases and tailoring enzymes. The tailoring enzyme McyI, a 2-hydroxyacid dehydrogenase, converts (3-methyl)malate into (3-methyl)oxaloacetate to produce the non-proteinogenic am...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Communications Biology |
| Online Access: | https://doi.org/10.1038/s42003-025-08008-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The most common cyanotoxin microcystin is a cyclic heptapeptide produced by non-ribosomal peptide-polyketide synthetases and tailoring enzymes. The tailoring enzyme McyI, a 2-hydroxyacid dehydrogenase, converts (3-methyl)malate into (3-methyl)oxaloacetate to produce the non-proteinogenic amino acid (3-methyl)aspartate. The reaction is NAD(P)-dependent but the catalytic mechanism remains unclear. Here we describe the crystal structures of McyI at three states: bound with copurified NAD, cocrystallized with NAD/NADP, and cocrystallized with malate or the substrate analogue citrate. An McyI protomer has unusual three nicotinamide cofactor-binding sites, named the NAD-prebound, NADP specific, and non-specific sites. Biochemical studies confirmed the NADP preference during oxidoreductase reaction. Molecular basis for McyI catalysis was revealed by the structures of McyI-NAD binary complex, McyI-NAD-NADP and McyI-NAD-malate ternary complexes, which demonstrate different opening angles between the substrate-binding domain and the nucleotide-binding domain. These findings indicate that McyI is a unique member of the 2-hydroxyacid dehydrogenase superfamily and provide detailed structural insights into its catalytic mechanism. In addition, the structural ensemble representing various binding states offers clues for designing enzyme for bioengineering applications. |
|---|---|
| ISSN: | 2399-3642 |