Microwave-Mediated Extraction of Critical Metals from LED E-Waste

This study introduces a microwave-assisted technique for extracting critical minerals from LED electronic waste. The process begins with microwave irradiation, which thermally decomposes the LED’s plastic lens into a brittle, charred residue. During this stage, the LED chip undergoes deflagration—be...

Full description

Saved in:
Bibliographic Details
Main Authors: Athanasios B. Bourlinos, Christina Papachristodoulou, Anastasios Markou, Nikolaos Chalmpes, Emmanuel P. Giannelis, Dimitrios P. Gournis, Constantinos E. Salmas, Michael A. Karakassides
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:ChemEngineering
Subjects:
Online Access:https://www.mdpi.com/2305-7084/9/3/47
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study introduces a microwave-assisted technique for extracting critical minerals from LED electronic waste. The process begins with microwave irradiation, which thermally decomposes the LED’s plastic lens into a brittle, charred residue. During this stage, the LED chip undergoes deflagration—being rapidly ejected from the reflective cavity and becoming embedded within the decomposed lens material. Consequently, the chip is encapsulated in the resulting charred residue. This composite, consisting of the charred lens and the LED chip, can be easily separated from the metallic pins (Fe, Ni, Ag), which remain almost undamaged. Subsequent calcination of the charred material in air exposes the materials making up the LED chip, which contain critical metals (e.g., Ga, As, In, Y, Au). These metals are then extracted through a two-step acid leaching process involving aqua regia followed by hot concentrated hydrochloric acid, yielding them in potentially recoverable forms. The synergistic effect of microwave irradiation and acid treatment achieves an average extraction efficiency of 96% for critical metals. Notably, this approach enables complete and loss-free recovery of the LED chip, offering a practical and efficient solution for LED e-waste recycling.
ISSN:2305-7084