A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems

In many engineering applications, unknown states, inputs, and parameters exist in the structures. However, most methods require one or two of these variables to be known in order to identify the other(s). Recently, the authors have proposed a method called EGDF for coupled state/input/parameter iden...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhimin Wan, Ting Wang, Lin Li, Zhichao Xu
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/7691721
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In many engineering applications, unknown states, inputs, and parameters exist in the structures. However, most methods require one or two of these variables to be known in order to identify the other(s). Recently, the authors have proposed a method called EGDF for coupled state/input/parameter identification for nonlinear system in state space. However, the EGDF method based solely on acceleration measurements is found to be unstable, which can cause the drift of the identified inputs and displacements. Although some regularization methods can be adopted for solving the problem, they are not suitable for joint input-state identification in real time. In this paper, a strategy of data fusion of displacement and acceleration measurements is used to avoid the low-frequency drift in the identified inputs and structural displacements for linear structural systems. Two numerical examples about a plane truss and a single-stage isolation system are conducted to verify the effectiveness of the proposed modified EGDF algorithm.
ISSN:1070-9622
1875-9203