Solid-State Welding of Thin Aluminum Sheets: A Case Study of Friction Stir Welding Alloys 1050 and 5754

This study explores the friction stir welding (FSW) of thin aluminum sheets, focusing on alloys 1050 and 5754. FSW, a solid-state joining technique, offers advantages like minimal deformation and high joint strength, but optimizing welding parameters is crucial for sound welds. In order to investiga...

Full description

Saved in:
Bibliographic Details
Main Authors: Georgios Patsalias, Konstantinos Sofias, Achilles Vairis
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/4/463
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the friction stir welding (FSW) of thin aluminum sheets, focusing on alloys 1050 and 5754. FSW, a solid-state joining technique, offers advantages like minimal deformation and high joint strength, but optimizing welding parameters is crucial for sound welds. In order to investigate the optimum welding parameters, the Taguchi method was employed, in which key parameters such as rotational and welding speed were optimized to enhance tensile strength and weld quality. The tensile testing of the welded specimens revealed that the optimal combination—1000 RPM rotational speed and 250 mm/min welding speed—produced the highest tensile strength and weld quality. The results highlight the importance of parameter optimization in ensuring strong, stable welds, with rotational speed having the most significant influence. Additionally, excessive rotational speeds were found to weaken welds due to excessive heat input, while a slower welding speed contributed to greater weld stability.
ISSN:2075-4701