WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification

Current methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA) involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a refitting procedure of all parameters is carried out to reduce model...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Zambrano, J. Sanchis, J. M. Herrero, M. Martínez
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/1753262
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546573530169344
author J. Zambrano
J. Sanchis
J. M. Herrero
M. Martínez
author_facet J. Zambrano
J. Sanchis
J. M. Herrero
M. Martínez
author_sort J. Zambrano
collection DOAJ
description Current methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA) involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a refitting procedure of all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems in a single step is proposed. This approach is based on a customized evolutionary algorithm (WH-EA) able to look for the best BLA split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA estimation, the locations of poles and zeros are subtly modified within an adequate search space to allow a fine-tuning of the model. The performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identification benchmark.
format Article
id doaj-art-00dbe9002fbb4023878e840a7be62916
institution Kabale University
issn 1076-2787
1099-0526
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Complexity
spelling doaj-art-00dbe9002fbb4023878e840a7be629162025-02-03T06:47:53ZengWileyComplexity1076-27871099-05262018-01-01201810.1155/2018/17532621753262WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System IdentificationJ. Zambrano0J. Sanchis1J. M. Herrero2M. Martínez3Universidad Politécnica Salesiana, Cuenca, EcuadorInstituto Universitario de Automática e Informática Industrial, Universitat Politecnica de Valencia, València, SpainInstituto Universitario de Automática e Informática Industrial, Universitat Politecnica de Valencia, València, SpainInstituto Universitario de Automática e Informática Industrial, Universitat Politecnica de Valencia, València, SpainCurrent methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA) involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a refitting procedure of all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems in a single step is proposed. This approach is based on a customized evolutionary algorithm (WH-EA) able to look for the best BLA split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA estimation, the locations of poles and zeros are subtly modified within an adequate search space to allow a fine-tuning of the model. The performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identification benchmark.http://dx.doi.org/10.1155/2018/1753262
spellingShingle J. Zambrano
J. Sanchis
J. M. Herrero
M. Martínez
WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
Complexity
title WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
title_full WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
title_fullStr WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
title_full_unstemmed WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
title_short WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
title_sort wh ea an evolutionary algorithm for wiener hammerstein system identification
url http://dx.doi.org/10.1155/2018/1753262
work_keys_str_mv AT jzambrano wheaanevolutionaryalgorithmforwienerhammersteinsystemidentification
AT jsanchis wheaanevolutionaryalgorithmforwienerhammersteinsystemidentification
AT jmherrero wheaanevolutionaryalgorithmforwienerhammersteinsystemidentification
AT mmartinez wheaanevolutionaryalgorithmforwienerhammersteinsystemidentification