New proof and generalization of some results on translated sums over k-almost primes
A sequence $\mathcal{A}$ of strictly positive integers is said to be primitive if none of its terms divides the others, Erdős conjectured that the sum $f(\mathcal{A},0)\le f(\mathbb{N}_{1},0),$ where $\mathbb{N}_{1}$ is the sequence of prime numbers and $f(\mathcal{A},h)=\sum _{a\,\in \,\mathcal{A}}...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-05-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.552/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206204865970176 |
---|---|
author | Laib, Ilias |
author_facet | Laib, Ilias |
author_sort | Laib, Ilias |
collection | DOAJ |
description | A sequence $\mathcal{A}$ of strictly positive integers is said to be primitive if none of its terms divides the others, Erdős conjectured that the sum $f(\mathcal{A},0)\le f(\mathbb{N}_{1},0),$ where $\mathbb{N}_{1}$ is the sequence of prime numbers and $f(\mathcal{A},h)=\sum _{a\,\in \,\mathcal{A}}$ $\frac{1}{a(\log a+h) }$. In 2019, Laib et al. proved that the analogous conjecture of Erdős $f(\mathcal{A},h)\le f(\mathbb{N}_{1},h)$ is false for $h\ge 81$ on a sequence of semiprimes. Recently, Lichtman gave the best lower bound $h=1.04\cdots $ on semiprimes and he obtained other results for translated sums on $k$-almost primes with $ 2 |
format | Article |
id | doaj-art-00c2ae8e581b4f8f9381a9ec34e2dfbc |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-05-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-00c2ae8e581b4f8f9381a9ec34e2dfbc2025-02-07T11:21:12ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G548148610.5802/crmath.55210.5802/crmath.552New proof and generalization of some results on translated sums over k-almost primesLaib, Ilias0ENSTP and Laboratory of Equations with Partial Non-Linear Derivatives ENS Vieux Kouba, Algiers, Algeria.A sequence $\mathcal{A}$ of strictly positive integers is said to be primitive if none of its terms divides the others, Erdős conjectured that the sum $f(\mathcal{A},0)\le f(\mathbb{N}_{1},0),$ where $\mathbb{N}_{1}$ is the sequence of prime numbers and $f(\mathcal{A},h)=\sum _{a\,\in \,\mathcal{A}}$ $\frac{1}{a(\log a+h) }$. In 2019, Laib et al. proved that the analogous conjecture of Erdős $f(\mathcal{A},h)\le f(\mathbb{N}_{1},h)$ is false for $h\ge 81$ on a sequence of semiprimes. Recently, Lichtman gave the best lower bound $h=1.04\cdots $ on semiprimes and he obtained other results for translated sums on $k$-almost primes with $ 2https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.552/ |
spellingShingle | Laib, Ilias New proof and generalization of some results on translated sums over k-almost primes Comptes Rendus. Mathématique |
title | New proof and generalization of some results on translated sums over k-almost primes |
title_full | New proof and generalization of some results on translated sums over k-almost primes |
title_fullStr | New proof and generalization of some results on translated sums over k-almost primes |
title_full_unstemmed | New proof and generalization of some results on translated sums over k-almost primes |
title_short | New proof and generalization of some results on translated sums over k-almost primes |
title_sort | new proof and generalization of some results on translated sums over k almost primes |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.552/ |
work_keys_str_mv | AT laibilias newproofandgeneralizationofsomeresultsontranslatedsumsoverkalmostprimes |