New proof and generalization of some results on translated sums over k-almost primes

A sequence $\mathcal{A}$ of strictly positive integers is said to be primitive if none of its terms divides the others, Erdős conjectured that the sum $f(\mathcal{A},0)\le f(\mathbb{N}_{1},0),$ where $\mathbb{N}_{1}$ is the sequence of prime numbers and $f(\mathcal{A},h)=\sum _{a\,\in \,\mathcal{A}}...

Full description

Saved in:
Bibliographic Details
Main Author: Laib, Ilias
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.552/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206204865970176
author Laib, Ilias
author_facet Laib, Ilias
author_sort Laib, Ilias
collection DOAJ
description A sequence $\mathcal{A}$ of strictly positive integers is said to be primitive if none of its terms divides the others, Erdős conjectured that the sum $f(\mathcal{A},0)\le f(\mathbb{N}_{1},0),$ where $\mathbb{N}_{1}$ is the sequence of prime numbers and $f(\mathcal{A},h)=\sum _{a\,\in \,\mathcal{A}}$ $\frac{1}{a(\log a+h) }$. In 2019, Laib et al. proved that the analogous conjecture of Erdős $f(\mathcal{A},h)\le f(\mathbb{N}_{1},h)$ is false for $h\ge 81$ on a sequence of semiprimes. Recently, Lichtman gave the best lower bound $h=1.04\cdots $ on semiprimes and he obtained other results for translated sums on $k$-almost primes with $ 2
format Article
id doaj-art-00c2ae8e581b4f8f9381a9ec34e2dfbc
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-00c2ae8e581b4f8f9381a9ec34e2dfbc2025-02-07T11:21:12ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G548148610.5802/crmath.55210.5802/crmath.552New proof and generalization of some results on translated sums over k-almost primesLaib, Ilias0ENSTP and Laboratory of Equations with Partial Non-Linear Derivatives ENS Vieux Kouba, Algiers, Algeria.A sequence $\mathcal{A}$ of strictly positive integers is said to be primitive if none of its terms divides the others, Erdős conjectured that the sum $f(\mathcal{A},0)\le f(\mathbb{N}_{1},0),$ where $\mathbb{N}_{1}$ is the sequence of prime numbers and $f(\mathcal{A},h)=\sum _{a\,\in \,\mathcal{A}}$ $\frac{1}{a(\log a+h) }$. In 2019, Laib et al. proved that the analogous conjecture of Erdős $f(\mathcal{A},h)\le f(\mathbb{N}_{1},h)$ is false for $h\ge 81$ on a sequence of semiprimes. Recently, Lichtman gave the best lower bound $h=1.04\cdots $ on semiprimes and he obtained other results for translated sums on $k$-almost primes with $ 2https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.552/
spellingShingle Laib, Ilias
New proof and generalization of some results on translated sums over k-almost primes
Comptes Rendus. Mathématique
title New proof and generalization of some results on translated sums over k-almost primes
title_full New proof and generalization of some results on translated sums over k-almost primes
title_fullStr New proof and generalization of some results on translated sums over k-almost primes
title_full_unstemmed New proof and generalization of some results on translated sums over k-almost primes
title_short New proof and generalization of some results on translated sums over k-almost primes
title_sort new proof and generalization of some results on translated sums over k almost primes
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.552/
work_keys_str_mv AT laibilias newproofandgeneralizationofsomeresultsontranslatedsumsoverkalmostprimes