Fractional Quantum Field Theory: From Lattice to Continuum

An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of...

Full description

Saved in:
Bibliographic Details
Main Author: Vasily E. Tarasov
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2014/957863
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.
ISSN:1687-7357
1687-7365