Fractional Quantum Field Theory: From Lattice to Continuum
An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Advances in High Energy Physics |
Online Access: | http://dx.doi.org/10.1155/2014/957863 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates. |
---|---|
ISSN: | 1687-7357 1687-7365 |