Controllability of Flow-Conservation Transportation Networks with Fractional-Order Dynamics

In this paper, we adapt the fractional derivative approach to formulate the flow-conservation transportation networks, which consider the propagation dynamics and the users’ behaviors in terms of route choices. We then investigate the controllability of the fractional-order transportation networks b...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Chen, Bo Zhou
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/8524984
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we adapt the fractional derivative approach to formulate the flow-conservation transportation networks, which consider the propagation dynamics and the users’ behaviors in terms of route choices. We then investigate the controllability of the fractional-order transportation networks by employing the Popov-Belevitch-Hautus rank condition and the QR decomposition algorithm. Furthermore, we provide the exact solutions for the full controllability pricing controller location problem, which includes where to locate the controllers and how many controllers are required at the location positions. Finally, we illustrate two numerical examples to validate the theoretical analysis.
ISSN:1099-0526