On the Possibility of the Jerk Derivative in Electrical Circuits

A subclass of dynamical systems with a time rate of change of acceleration are called Newtonian jerky dynamics. Some mechanical and acoustic systems can be interpreted as jerky dynamics. In this paper we show that the jerk dynamics are naturally obtained for electrical circuits using the fractional...

Full description

Saved in:
Bibliographic Details
Main Authors: J. F. Gómez-Aguilar, J. Rosales-García, R. F. Escobar-Jiménez, M. G. López-López, V. M. Alvarado-Martínez, V. H. Olivares-Peregrino
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2016/9740410
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560848448520192
author J. F. Gómez-Aguilar
J. Rosales-García
R. F. Escobar-Jiménez
M. G. López-López
V. M. Alvarado-Martínez
V. H. Olivares-Peregrino
author_facet J. F. Gómez-Aguilar
J. Rosales-García
R. F. Escobar-Jiménez
M. G. López-López
V. M. Alvarado-Martínez
V. H. Olivares-Peregrino
author_sort J. F. Gómez-Aguilar
collection DOAJ
description A subclass of dynamical systems with a time rate of change of acceleration are called Newtonian jerky dynamics. Some mechanical and acoustic systems can be interpreted as jerky dynamics. In this paper we show that the jerk dynamics are naturally obtained for electrical circuits using the fractional calculus approach with order γ. We consider fractional LC and RL electrical circuits with 1⩽γ<2 for different source terms. The LC circuit has a frequency ω dependent on the order of the fractional differential equation γ, since it is defined as ω(γ)=ω0γγ1-γ, where ω0 is the fundamental frequency. For γ=3/2, the system is described by a third-order differential equation with frequency ω~ω03/2, and assuming γ=2 the dynamics are described by a fourth differential equation for jerk dynamics with frequency ω~ω02.
format Article
id doaj-art-0051c9490ef042979d379f8da8d05c15
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-0051c9490ef042979d379f8da8d05c152025-02-03T01:26:26ZengWileyAdvances in Mathematical Physics1687-91201687-91392016-01-01201610.1155/2016/97404109740410On the Possibility of the Jerk Derivative in Electrical CircuitsJ. F. Gómez-Aguilar0J. Rosales-García1R. F. Escobar-Jiménez2M. G. López-López3V. M. Alvarado-Martínez4V. H. Olivares-Peregrino5CONACYT-Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, 62490 Cuernavaca, MOR, MexicoDepartamento de Ingeniería Electrica, DICIS, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, Km. 3.5 + 1.8 Km., Comunidad de Palo Blanco, Salamanca, GTO, MexicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, 62490, Cuernavaca, MOR, MexicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, 62490, Cuernavaca, MOR, MexicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, 62490, Cuernavaca, MOR, MexicoCentro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, 62490, Cuernavaca, MOR, MexicoA subclass of dynamical systems with a time rate of change of acceleration are called Newtonian jerky dynamics. Some mechanical and acoustic systems can be interpreted as jerky dynamics. In this paper we show that the jerk dynamics are naturally obtained for electrical circuits using the fractional calculus approach with order γ. We consider fractional LC and RL electrical circuits with 1⩽γ<2 for different source terms. The LC circuit has a frequency ω dependent on the order of the fractional differential equation γ, since it is defined as ω(γ)=ω0γγ1-γ, where ω0 is the fundamental frequency. For γ=3/2, the system is described by a third-order differential equation with frequency ω~ω03/2, and assuming γ=2 the dynamics are described by a fourth differential equation for jerk dynamics with frequency ω~ω02.http://dx.doi.org/10.1155/2016/9740410
spellingShingle J. F. Gómez-Aguilar
J. Rosales-García
R. F. Escobar-Jiménez
M. G. López-López
V. M. Alvarado-Martínez
V. H. Olivares-Peregrino
On the Possibility of the Jerk Derivative in Electrical Circuits
Advances in Mathematical Physics
title On the Possibility of the Jerk Derivative in Electrical Circuits
title_full On the Possibility of the Jerk Derivative in Electrical Circuits
title_fullStr On the Possibility of the Jerk Derivative in Electrical Circuits
title_full_unstemmed On the Possibility of the Jerk Derivative in Electrical Circuits
title_short On the Possibility of the Jerk Derivative in Electrical Circuits
title_sort on the possibility of the jerk derivative in electrical circuits
url http://dx.doi.org/10.1155/2016/9740410
work_keys_str_mv AT jfgomezaguilar onthepossibilityofthejerkderivativeinelectricalcircuits
AT jrosalesgarcia onthepossibilityofthejerkderivativeinelectricalcircuits
AT rfescobarjimenez onthepossibilityofthejerkderivativeinelectricalcircuits
AT mglopezlopez onthepossibilityofthejerkderivativeinelectricalcircuits
AT vmalvaradomartinez onthepossibilityofthejerkderivativeinelectricalcircuits
AT vholivaresperegrino onthepossibilityofthejerkderivativeinelectricalcircuits