Plasma-wall interaction impact of the ITER re-baseline

To mitigate the impact of technical delays, provide a more rationalized approach to the safety demonstration and move forward as rapidly as possible to a reactor relevant materials choice, the ITER Organization embarked in 2023 on a significant re-baselining exercise. Central to this strategy is the...

Full description

Saved in:
Bibliographic Details
Main Authors: R.A. Pitts, A. Loarte, T. Wauters, M. Dubrov, Y. Gribov, F. Köchl, A. Pshenov, Y. Zhang, J. Artola, X. Bonnin, L. Chen, M. Lehnen, K. Schmid, R. Ding, H. Frerichs, R. Futtersack, X. Gong, G. Hagelaar, E. Hodille, J. Hobirk, S. Krat, D. Matveev, K. Paschalidis, J. Qian, S. Ratynskaia, T. Rizzi, V. Rozhansky, P. Tamain, P. Tolias, L. Zhang, W. Zhang
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Nuclear Materials and Energy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179124002771
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850228375326556160
author R.A. Pitts
A. Loarte
T. Wauters
M. Dubrov
Y. Gribov
F. Köchl
A. Pshenov
Y. Zhang
J. Artola
X. Bonnin
L. Chen
M. Lehnen
K. Schmid
R. Ding
H. Frerichs
R. Futtersack
X. Gong
G. Hagelaar
E. Hodille
J. Hobirk
S. Krat
D. Matveev
K. Paschalidis
J. Qian
S. Ratynskaia
T. Rizzi
V. Rozhansky
P. Tamain
P. Tolias
L. Zhang
W. Zhang
author_facet R.A. Pitts
A. Loarte
T. Wauters
M. Dubrov
Y. Gribov
F. Köchl
A. Pshenov
Y. Zhang
J. Artola
X. Bonnin
L. Chen
M. Lehnen
K. Schmid
R. Ding
H. Frerichs
R. Futtersack
X. Gong
G. Hagelaar
E. Hodille
J. Hobirk
S. Krat
D. Matveev
K. Paschalidis
J. Qian
S. Ratynskaia
T. Rizzi
V. Rozhansky
P. Tamain
P. Tolias
L. Zhang
W. Zhang
author_sort R.A. Pitts
collection DOAJ
description To mitigate the impact of technical delays, provide a more rationalized approach to the safety demonstration and move forward as rapidly as possible to a reactor relevant materials choice, the ITER Organization embarked in 2023 on a significant re-baselining exercise. Central to this strategy is the elimination of beryllium (Be) first wall (FW) armour in favour of tungsten (W), placing plasma-wall interaction (PWI) centre stage of this new proposal. The switch to W comes with a modified Research Plan in which a first “Start of Research Operation” (SRO) campaign will use an inertially cooled, temporary FW, allowing experience to be gained with disruption mitigation without risking damage to the complex water-cooled panels to be installed for later DT operation. Conservative assessments of the W wall source, coupled with integrated modelling of W pedestal and core transport, demonstrate that the elimination of Be presents only a low risk to the achievement of the principal ITER Q = 10 DT burning plasma target. Primarily to reduce oxygen contamination in the limiter start-up phase, known to be a potential issue for current ramp-up on W surfaces, a conventional diborane-based glow discharge boronization system is included in the re-baseline. First-of-a-kind modelling of the boronization glow is used to provide the physics specification for this system. Erosion simulations accounting for the 3D wall geometry provide estimates both of the lifetime of boron (B) wall coatings and the subsequent B migration to remote areas, providing support to a simple evaluation which concludes that boronization, if it were to be used frequently, would dominate fuel retention in an all-W ITER. Boundary plasma (SOLPS-ITER) and integrated core–edge (JINTRAC) simulations, including W erosion and transport, clearly indicate the tendency for a self-regulating W sputter source in limiter configurations and highlight the importance of on-axis electron cyclotron power deposition to prevent W core accumulation in the early current ramp phase. These predicted trends are found experimentally in dedicated W limiter start-up experiments on the EAST tokamak. The SOLPS-ITER runs are used to formulate W source boundary conditions for 1.5D DINA code scenario design simulations which demonstrate that flattop durations of ∼100 s should be possible in hydrogen L-modes at nominal field and current (Ip = 15 MA, BT = 5.3 T) which are one of the principal SRO targets. Runaway electrons (RE) are considered to be a key threat to the integrity of the final, actively cooled FW panels. New simulations of RE deposition and subsequent thermal transport in W under conservative assumptions for the impact energy and spatial distribution, conclude that there is a strong argument to increase the W armour thickness in key FW areas to improve margins against cooling channel interface damage in the early DT operation phases when new RE seeds will be experienced for the first time.
format Article
id doaj-art-004de86e52e04b4b82d10b7a9a7a5e0d
institution OA Journals
issn 2352-1791
language English
publishDate 2025-03-01
publisher Elsevier
record_format Article
series Nuclear Materials and Energy
spelling doaj-art-004de86e52e04b4b82d10b7a9a7a5e0d2025-08-20T02:04:33ZengElsevierNuclear Materials and Energy2352-17912025-03-014210185410.1016/j.nme.2024.101854Plasma-wall interaction impact of the ITER re-baselineR.A. Pitts0A. Loarte1T. Wauters2M. Dubrov3Y. Gribov4F. Köchl5A. Pshenov6Y. Zhang7J. Artola8X. Bonnin9L. Chen10M. Lehnen11K. Schmid12R. Ding13H. Frerichs14R. Futtersack15X. Gong16G. Hagelaar17E. Hodille18J. Hobirk19S. Krat20D. Matveev21K. Paschalidis22J. Qian23S. Ratynskaia24T. Rizzi25V. Rozhansky26P. Tamain27P. Tolias28L. Zhang29W. Zhang30ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, France; Corresponding author.ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceKey Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, ChinaITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067, St. Paul Lez Durance Cedex, FranceMax-Planck-Institut für Plasmaphysik, 85748, Garching, GermanyInstitute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, ChinaDepartment of Engineering Physics, University of Wisconsin, Madison, WI 53706, USACCFE, Culham Science Centre, Abingdon OX14 3DB, UKInstitute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, ChinaLAPLACE, Université de Toulouse, CNRS, INPT, UPS, 118 Route de Narbonne 31062, Toulouse, FranceCEA, IRFM, F-13108, Saint Paul-lez-Durance, FranceMax-Planck-Institut für Plasmaphysik, 85748, Garching, GermanyNational Research Nuclear University MEPhI, Kashirskoe Shosse, 31, Moscow, RussiaForschungszentrum Jülich GmbH, Institut fuer Energie und Klimaforschung, Jülich, GermanySpace and Plasma Physics—KTH Royal Institute of Technology, Teknikringen 31 10044, Stockholm, SwedenInstitute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, ChinaSpace and Plasma Physics—KTH Royal Institute of Technology, Teknikringen 31 10044, Stockholm, SwedenSpace and Plasma Physics—KTH Royal Institute of Technology, Teknikringen 31 10044, Stockholm, SwedenPeter the Great St.Petersburg Polytechnic University, Polytechnicheskaya 29 195251, St.Petersburg, RussiaCEA, IRFM, F-13108, Saint Paul-lez-Durance, FranceSpace and Plasma Physics—KTH Royal Institute of Technology, Teknikringen 31 10044, Stockholm, SwedenInstitute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, ChinaInstitute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, ChinaTo mitigate the impact of technical delays, provide a more rationalized approach to the safety demonstration and move forward as rapidly as possible to a reactor relevant materials choice, the ITER Organization embarked in 2023 on a significant re-baselining exercise. Central to this strategy is the elimination of beryllium (Be) first wall (FW) armour in favour of tungsten (W), placing plasma-wall interaction (PWI) centre stage of this new proposal. The switch to W comes with a modified Research Plan in which a first “Start of Research Operation” (SRO) campaign will use an inertially cooled, temporary FW, allowing experience to be gained with disruption mitigation without risking damage to the complex water-cooled panels to be installed for later DT operation. Conservative assessments of the W wall source, coupled with integrated modelling of W pedestal and core transport, demonstrate that the elimination of Be presents only a low risk to the achievement of the principal ITER Q = 10 DT burning plasma target. Primarily to reduce oxygen contamination in the limiter start-up phase, known to be a potential issue for current ramp-up on W surfaces, a conventional diborane-based glow discharge boronization system is included in the re-baseline. First-of-a-kind modelling of the boronization glow is used to provide the physics specification for this system. Erosion simulations accounting for the 3D wall geometry provide estimates both of the lifetime of boron (B) wall coatings and the subsequent B migration to remote areas, providing support to a simple evaluation which concludes that boronization, if it were to be used frequently, would dominate fuel retention in an all-W ITER. Boundary plasma (SOLPS-ITER) and integrated core–edge (JINTRAC) simulations, including W erosion and transport, clearly indicate the tendency for a self-regulating W sputter source in limiter configurations and highlight the importance of on-axis electron cyclotron power deposition to prevent W core accumulation in the early current ramp phase. These predicted trends are found experimentally in dedicated W limiter start-up experiments on the EAST tokamak. The SOLPS-ITER runs are used to formulate W source boundary conditions for 1.5D DINA code scenario design simulations which demonstrate that flattop durations of ∼100 s should be possible in hydrogen L-modes at nominal field and current (Ip = 15 MA, BT = 5.3 T) which are one of the principal SRO targets. Runaway electrons (RE) are considered to be a key threat to the integrity of the final, actively cooled FW panels. New simulations of RE deposition and subsequent thermal transport in W under conservative assumptions for the impact energy and spatial distribution, conclude that there is a strong argument to increase the W armour thickness in key FW areas to improve margins against cooling channel interface damage in the early DT operation phases when new RE seeds will be experienced for the first time.http://www.sciencedirect.com/science/article/pii/S2352179124002771TungstenFirst WallBoronizationLimiter start-upSOLPS-ITERRunaway electrons
spellingShingle R.A. Pitts
A. Loarte
T. Wauters
M. Dubrov
Y. Gribov
F. Köchl
A. Pshenov
Y. Zhang
J. Artola
X. Bonnin
L. Chen
M. Lehnen
K. Schmid
R. Ding
H. Frerichs
R. Futtersack
X. Gong
G. Hagelaar
E. Hodille
J. Hobirk
S. Krat
D. Matveev
K. Paschalidis
J. Qian
S. Ratynskaia
T. Rizzi
V. Rozhansky
P. Tamain
P. Tolias
L. Zhang
W. Zhang
Plasma-wall interaction impact of the ITER re-baseline
Nuclear Materials and Energy
Tungsten
First Wall
Boronization
Limiter start-up
SOLPS-ITER
Runaway electrons
title Plasma-wall interaction impact of the ITER re-baseline
title_full Plasma-wall interaction impact of the ITER re-baseline
title_fullStr Plasma-wall interaction impact of the ITER re-baseline
title_full_unstemmed Plasma-wall interaction impact of the ITER re-baseline
title_short Plasma-wall interaction impact of the ITER re-baseline
title_sort plasma wall interaction impact of the iter re baseline
topic Tungsten
First Wall
Boronization
Limiter start-up
SOLPS-ITER
Runaway electrons
url http://www.sciencedirect.com/science/article/pii/S2352179124002771
work_keys_str_mv AT rapitts plasmawallinteractionimpactoftheiterrebaseline
AT aloarte plasmawallinteractionimpactoftheiterrebaseline
AT twauters plasmawallinteractionimpactoftheiterrebaseline
AT mdubrov plasmawallinteractionimpactoftheiterrebaseline
AT ygribov plasmawallinteractionimpactoftheiterrebaseline
AT fkochl plasmawallinteractionimpactoftheiterrebaseline
AT apshenov plasmawallinteractionimpactoftheiterrebaseline
AT yzhang plasmawallinteractionimpactoftheiterrebaseline
AT jartola plasmawallinteractionimpactoftheiterrebaseline
AT xbonnin plasmawallinteractionimpactoftheiterrebaseline
AT lchen plasmawallinteractionimpactoftheiterrebaseline
AT mlehnen plasmawallinteractionimpactoftheiterrebaseline
AT kschmid plasmawallinteractionimpactoftheiterrebaseline
AT rding plasmawallinteractionimpactoftheiterrebaseline
AT hfrerichs plasmawallinteractionimpactoftheiterrebaseline
AT rfuttersack plasmawallinteractionimpactoftheiterrebaseline
AT xgong plasmawallinteractionimpactoftheiterrebaseline
AT ghagelaar plasmawallinteractionimpactoftheiterrebaseline
AT ehodille plasmawallinteractionimpactoftheiterrebaseline
AT jhobirk plasmawallinteractionimpactoftheiterrebaseline
AT skrat plasmawallinteractionimpactoftheiterrebaseline
AT dmatveev plasmawallinteractionimpactoftheiterrebaseline
AT kpaschalidis plasmawallinteractionimpactoftheiterrebaseline
AT jqian plasmawallinteractionimpactoftheiterrebaseline
AT sratynskaia plasmawallinteractionimpactoftheiterrebaseline
AT trizzi plasmawallinteractionimpactoftheiterrebaseline
AT vrozhansky plasmawallinteractionimpactoftheiterrebaseline
AT ptamain plasmawallinteractionimpactoftheiterrebaseline
AT ptolias plasmawallinteractionimpactoftheiterrebaseline
AT lzhang plasmawallinteractionimpactoftheiterrebaseline
AT wzhang plasmawallinteractionimpactoftheiterrebaseline