Tumor Necrosis Factor Induces Developmental Stage-Dependent Structural Changes in the Immature Small Intestine

Background. Premature infants are commonly subject to intestinal inflammation. Since the human small intestine does not reach maturity until term gestation, premature infants have a unique challenge, as either acute or chronic inflammation may alter the normal development of the intestinal tract. Tu...

Full description

Saved in:
Bibliographic Details
Main Authors: Kathryn S. Brown, Huiyu Gong, Mark R. Frey, Brock Pope, Matthew Golden, Katerina Martin, Mitchel Obey, Steven J. McElroy
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Mediators of Inflammation
Online Access:http://dx.doi.org/10.1155/2014/852378
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background. Premature infants are commonly subject to intestinal inflammation. Since the human small intestine does not reach maturity until term gestation, premature infants have a unique challenge, as either acute or chronic inflammation may alter the normal development of the intestinal tract. Tumor necrosis factor (TNF) has been shown to acutely alter goblet cell numbers and villus length in adult mice. In this study we tested the effects of TNF on villus architecture and epithelial cells at different stages of development of the immature small intestine. Methods. To examine the effects of TNF-induced inflammation, we injected acute, brief, or chronic exposures of TNF in neonatal and juvenile mice. Results. TNF induced significant villus blunting through a TNF receptor-1 (TNFR1) mediated mechanism, leading to loss of villus area. This response to TNFR1 signaling was altered during intestinal development, despite constant TNFR1 protein expression. Acute TNF-mediated signaling also significantly decreased Paneth cells. Conclusions. Taken together, the morphologic changes caused by TNF provide insight as to the effects of inflammation on the developing intestinal tract. Additionally, they suggest a mechanism which, coupled with an immature immune system, may help to explain the unique susceptibility of the immature intestine to inflammatory diseases such as NEC.
ISSN:0962-9351
1466-1861