Further Results on a Curious Arithmetic Function
Let p be an odd prime number and n be a positive integer. Let vpn, N∗, and Q+ denote the p-adic valuation of the integer n, the set of positive integers, and the set of positive rational numbers, respectively. In this paper, we introduce an arithmetic function fp:N∗⟶Q+ defined by fpn≔n/pvpn1−vpn for...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2020/1894162 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let p be an odd prime number and n be a positive integer. Let vpn, N∗, and Q+ denote the p-adic valuation of the integer n, the set of positive integers, and the set of positive rational numbers, respectively. In this paper, we introduce an arithmetic function fp:N∗⟶Q+ defined by fpn≔n/pvpn1−vpn for any positive integer n. We show several interesting arithmetic properties about that function and then use them to establish some curious results involving the p-adic valuation. Some of these results extend Farhi’s results from the case of even prime to that of odd prime. |
---|---|
ISSN: | 2314-4629 2314-4785 |