A course in mathematical analysis /

"The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples...

Full description

Saved in:
Bibliographic Details
Main Author: Garling, D. J. H.
Format: Book
Language:English
Published: Cambridge : Cambridge University Press, 2013.
Subjects:
Online Access:View in OPAC
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000cam a2200000 i 4500
003 OSt
005 20210811120301.0
008 130211m20139999enk b 001 0 eng
952 |0 0  |1 0  |2 ddc  |4 0  |6 514_300000000000000_GAR  |7 0  |9 8036  |a EDU  |b EDU  |c Open  |d 2021-08-11  |l 0  |o 514.3 GAR  |p 8097  |r 2021-08-11 00:00:00  |w 2021-08-11  |y BOOK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 514_300000000000000_GAR  |7 0  |9 8037  |a EDU  |b EDU  |c Open  |d 2021-08-11  |l 0  |o 514.3 GAR  |p 8099  |r 2021-08-11 00:00:00  |w 2021-08-11  |y BOOK 
952 |0 0  |1 0  |2 ddc  |4 0  |6 514_300000000000000_GAR  |7 0  |9 8038  |a EDU  |b EDU  |c Open  |d 2021-08-11  |l 0  |o 514.3 GAR  |p 8098  |r 2021-08-11 00:00:00  |w 2021-08-11  |y BOOK 
999 |c 3683  |d 3683 
020 |a 9781107032033 (hardback) 
020 |a 9781107675322 (paperback) 
040 |a DLC  |c KABLIB  |d KABLIB 
042 |a pcc 
082 0 0 |a 514.325  |2 23  |b GAR 
100 1 |a Garling, D. J. H.  |9 3879 
245 1 0 |a A course in mathematical analysis /  |c D. J. H. Garling. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 617 p . :  |c 26 cm 
336 |a text  |2 rdacontent 
337 |a unmediated  |2 rdamedia 
338 |a volume  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 1 |a v. 2. Metric and topological spaces, functions of a vector variable 
505 8 |a Machine generated contents note: Introduction; Part I. Metric and Topological Spaces: 1. Metric spaces and normed spaces; 2. Convergence, continuity and topology; 3. Topological spaces; 4. Completeness; 5. Compactness; 6. Connectedness; Part II. Functions of a Vector Variable: 7. Differentiating functions of a vector variable; 8. Integrating functions of several variables; 9. Differential manifolds in Euclidean space; Appendix A. Linear algebra; Appendix B. Quaternions; Appendix C. Tychonoff's theorem; Index. 
520 |a "The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and teachers. Volume I focuses on the analysis of real-valued functions of a real variable. This second volume goes on to consider metric and topological spaces. Topics such as completeness, compactness and connectedness are developed, with emphasis on their applications to analysis. This leads to the theory of functions of several variables: differentiation is developed in a co-ordinate free way, while integration (the Riemann integral) is established for functions defined on subsets of Euclidean space. Differential manifolds in Euclidean space are introduced in a final chapter, which includes an account of Lagrange multipliers and a detailed proof of the divergence theorem. Volume III covers complex analysis and the theory of measure and integration. "--  |c Provided by publisher. 
650 0 |a Metric spaces.  |9 9797 
650 0 |a Topological spaces.  |9 9798 
650 0 |a Vector valued functions.  |9 9799 
650 7 |a MATHEMATICS / Mathematical Analysis.  |2 bisacsh  |9 3881 
942 |2 ddc  |c BOOK