Prediction on Slip Modulus of Screwed Connection for Timber–Concrete Composite Structures Based on Machine Learning
Screwed connections are widely adopted in timber–concrete composite (TCC) structures. Owing to the diverse connection configurations and complex shear mechanisms, existing empirical models or theoretical formulas cannot accurately and efficiently predict the shear modulus of a screwed connection. Th...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/14/2458 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Screwed connections are widely adopted in timber–concrete composite (TCC) structures. Owing to the diverse connection configurations and complex shear mechanisms, existing empirical models or theoretical formulas cannot accurately and efficiently predict the shear modulus of a screwed connection. Therefore, this study develops machine learning (ML) algorithms to accurately predict the slip modulus. A data set including 222 sets of testing results was established by collecting the values of the slip modulus and associated ten features. Four ML methods, including decision tree (DT), random forest (RF), adaptive boosting machine (AdaBoost), and gradient boosting regression tree (GBRT), are adopted to develop the ML algorithm. The Shapley Additive Explanation (SHAP) framework was employed to interpret the effects of related features on the slip modulus. GBRT demonstrated the best accuracy compared with the other three ML methods in terms of four popular quantitative metrics. Moreover, all ML methods showed an evident accuracy advantage compared to existing analytical methods. Through a SHAP analysis, it was found that concrete strength, screw inclination, timber density, and timber type have a large impact on the slip modulus of a screwed connection compared to other input features. |
|---|---|
| ISSN: | 2075-5309 |