Genome-Wide Analysis and Genomic Prediction of Chilling Tolerance of Maize During Germination Stage Using Genotyping-by-Sequencing SNPs

Chilling injury during the germination stage (CIGS) of maize significantly hinders production, particularly in middle- and high-latitude regions, leading to slow germination, seed decay, and increased susceptibility to pathogens. This study dissects the genetic architecture of CIGS resistance expres...

Full description

Saved in:
Bibliographic Details
Main Authors: Shiliang Cao, Tao Yu, Gengbin Yang, Wenyue Li, Xuena Ma, Jianguo Zhang
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/14/11/2048
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chilling injury during the germination stage (CIGS) of maize significantly hinders production, particularly in middle- and high-latitude regions, leading to slow germination, seed decay, and increased susceptibility to pathogens. This study dissects the genetic architecture of CIGS resistance expressed in terms of the relative germination rate (RGR) in maize through association mapping using genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs). A natural panel of 287 maize inbred lines was evaluated across multiple environments. The results revealed a broad-sense heritability of 0.68 for chilling tolerance, with 12 significant QTLs identified on chromosomes 1, 3, 5, 6, and 10. A genomic prediction analysis demonstrated that the rr-BLUP model outperformed other models in accuracy, achieving a moderate prediction accuracy of 0.44. This study highlights the potential of genomic selection (GS) to enhance chilling tolerance in maize, emphasizing the importance of training population size, marker density, and significant markers on prediction accuracy. These findings provide valuable insights for breeding programs aimed at improving chilling tolerance in maize.
ISSN:2077-0472