Quantitative Vulnerability Assessment of Buildings Exposed to Landslides Under Extreme Rainfall Scenarios

Landslides triggered by extreme rainfall often cause severe casualties and property losses. Therefore, it is essential to accurately assess and predict building vulnerability under landslide scenarios for effective risk mitigation. This study proposed a quantitative framework for vulnerability asses...

Full description

Saved in:
Bibliographic Details
Main Authors: Guangming Li, Dong Liu, Mengjiao Ruan, Yuhua Zhang, Jun He, Zizheng Guo, Haojie Wang, Mengchen Cheng
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/11/1838
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Landslides triggered by extreme rainfall often cause severe casualties and property losses. Therefore, it is essential to accurately assess and predict building vulnerability under landslide scenarios for effective risk mitigation. This study proposed a quantitative framework for vulnerability assessments of structures. It integrated extreme rainfall analysis, landslide kinematic assessment, and the dynamic response of structures. The study area is located in the northern mountainous region of Tianjin, China. It lies within the Yanshan Mountains, serving as a key transportation corridor linking North and Northeast China. The Sentinel-1A satellite imagery consisting of 77 SLC scenes (from October 2014 to November 2023) identified a slow-moving landslide in the region by using the SBAS-InSAR technique. High-resolution topographic data of the slope were first acquired through UAV-based remote sensing. Next, historical rainfall data from 1980 to 2017 were analyzed. The Gumbel distribution was used to determine the return periods of extreme rainfall events. The potential slope failure range and kinematic processes of the landslide were then simulated by using numerical simulations. The dynamic responses of buildings impacted by the landslide were modeled by using ABAQUS. These simulations allowed for the estimation of building vulnerability and the generation of vulnerability maps. Results showed that increased rainfall intensity significantly enlarged the plastic zone within the slope. This raised the likelihood of landslide occurrence and led to more severe building damage. When the rainfall return period increased from 50 to 100 years, the number of damaged buildings rose by about 10%. The vulnerability of individual buildings increased by 10% to 15%. The maximum vulnerability value increased from 0.87 to 1.0. This model offers a valuable addition to current quantitative landslide risk assessment frameworks. It is especially suitable for areas where landslides have not yet occurred.
ISSN:2075-5309