Optical Fiber Vibration Signal Recognition Based on the EMD Algorithm and CNN-LSTM

Accurately identifying optical fiber vibration signals is crucial for ensuring the proper operation of optical fiber perimeter security warning systems. To enhance the recognition accuracy of intrusion events detected by the distributed acoustic sensing system (DAS) based on phase-sensitive optical...

Full description

Saved in:
Bibliographic Details
Main Authors: Kun Li, Yao Zhen, Peng Li, Xinyue Hu, Lixia Yang
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/7/2016
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurately identifying optical fiber vibration signals is crucial for ensuring the proper operation of optical fiber perimeter security warning systems. To enhance the recognition accuracy of intrusion events detected by the distributed acoustic sensing system (DAS) based on phase-sensitive optical time-domain reflectometer (φ-OTDR) technology, we propose an identification method that combines empirical mode decomposition (EMD) with convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. First, the EMD algorithm decomposes the collected original optical fiber vibration signal into several intrinsic mode functions (IMFs), and the correlation coefficient between each IMF and the original signal is calculated. The signal is then reconstructed by selecting effective IMF components based on a suitable threshold. This reconstructed signal serves as the input for the network. CNN is used to extract time-series features from the vibration signal and LSTM is employed to classify the reconstructed signal. Experimental results demonstrate that this method effectively identifies three different types of vibration signals collected from a real-world environment, achieving a recognition accuracy of 97.3% for intrusion signals. This method successfully addresses the challenge of φ-OTDR pattern recognition and provides valuable insights for the development of practical engineering products.
ISSN:1424-8220