Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central China

<p>Using the vertical velocity (<span class="inline-formula"><i>w</i></span>) observed by a Ka-band millimeter wave cloud radar (MMCR) at Wuhan, we investigate the evolution of the convective boundary layer height (CBLH) based on a specified threshold of verti...

Full description

Saved in:
Bibliographic Details
Main Authors: Z. Zhang, K. Huang, F. Yi, W. Cheng, F. Liu, J. Zhang, Y. Jia
Format: Article
Language:English
Published: Copernicus Publications 2025-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/3347/2025/acp-25-3347-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850278524664938496
author Z. Zhang
Z. Zhang
Z. Zhang
K. Huang
K. Huang
K. Huang
F. Yi
F. Yi
F. Yi
W. Cheng
F. Liu
F. Liu
F. Liu
J. Zhang
Y. Jia
author_facet Z. Zhang
Z. Zhang
Z. Zhang
K. Huang
K. Huang
K. Huang
F. Yi
F. Yi
F. Yi
W. Cheng
F. Liu
F. Liu
F. Liu
J. Zhang
Y. Jia
author_sort Z. Zhang
collection DOAJ
description <p>Using the vertical velocity (<span class="inline-formula"><i>w</i></span>) observed by a Ka-band millimeter wave cloud radar (MMCR) at Wuhan, we investigate the evolution of the convective boundary layer height (CBLH) based on a specified threshold of vertical velocity variance (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">σ</mi><mi mathvariant="normal">w</mi><mn mathvariant="normal">2</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9b56224698e9b9cd666fa4380cc7c0dd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-3347-2025-ie00001.svg" width="14pt" height="16pt" src="acp-25-3347-2025-ie00001.png"/></svg:svg></span></span>). The CBLHs from the MMCR <span class="inline-formula"><i>w</i></span> in the selected durations are compared with those estimated by the lidar range-corrected signal (RCS) and radiosonde temperature based on different algorithms, showing good agreement with each other. Although these algorithms are based on different dynamic and thermodynamic effects, the diurnal evolution of the CBLH from MMCR is generally consistent with that from lidar, except for a few hours post-sunrise and pre-sunset due to the influence of the aerosol residual layer on the lidar RCS. Meanwhile, the CBLH from MMCR shows less variation with the occurrence of sand and dust and a swifter response for thick clouds relative to that from lidar. In this case, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">σ</mi><mi mathvariant="normal">w</mi><mn mathvariant="normal">2</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2a1698782d2a3a0cd31bf65df271295b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-3347-2025-ie00002.svg" width="14pt" height="16pt" src="acp-25-3347-2025-ie00002.png"/></svg:svg></span></span> of the MMCR <span class="inline-formula"><i>w</i></span> identifies the CBLH based on a dynamic effect, which can accurately capture the diurnal evolution of the CBLH compared with that from the change in long-time-mixing aerosol concentration. The monthly and seasonal features of the CBLH at Wuhan are revealed via the MMCR measurement. Hence, considering that the MMCR is capable of continuous observation in various weather conditions, the MMCR <span class="inline-formula"><i>w</i></span> with high resolution can be applied for monitoring the evolution of the CBLH in different atmospheric conditions, which is helpful for improving our comprehensive understanding of the convective boundary layer (CBL) and dynamic processes in the CBL.</p>
format Article
id doaj-art-dd0899d1d2e141d1aa3cc04da218c549
institution OA Journals
issn 1680-7316
1680-7324
language English
publishDate 2025-03-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-dd0899d1d2e141d1aa3cc04da218c5492025-08-20T01:49:27ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-03-01253347336110.5194/acp-25-3347-2025Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central ChinaZ. Zhang0Z. Zhang1Z. Zhang2K. Huang3K. Huang4K. Huang5F. Yi6F. Yi7F. Yi8W. Cheng9F. Liu10F. Liu11F. Liu12J. Zhang13Y. Jia14School of Earth and Space Science and Technology, Wuhan University, Wuhan, ChinaKey Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, ChinaState Observatory for Atmospheric Remote Sensing, Wuhan, ChinaSchool of Earth and Space Science and Technology, Wuhan University, Wuhan, ChinaKey Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, ChinaState Observatory for Atmospheric Remote Sensing, Wuhan, ChinaSchool of Earth and Space Science and Technology, Wuhan University, Wuhan, ChinaKey Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, ChinaState Observatory for Atmospheric Remote Sensing, Wuhan, ChinaBeijing Institute of Applied Meteorology, Beijing, ChinaSchool of Earth and Space Science and Technology, Wuhan University, Wuhan, ChinaKey Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, ChinaState Observatory for Atmospheric Remote Sensing, Wuhan, ChinaSchool of Geophysics and Geomatics, China University of Geosciences, Wuhan, ChinaNOAA Chemical Sciences Laboratory, Boulder, CO, USA<p>Using the vertical velocity (<span class="inline-formula"><i>w</i></span>) observed by a Ka-band millimeter wave cloud radar (MMCR) at Wuhan, we investigate the evolution of the convective boundary layer height (CBLH) based on a specified threshold of vertical velocity variance (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">σ</mi><mi mathvariant="normal">w</mi><mn mathvariant="normal">2</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9b56224698e9b9cd666fa4380cc7c0dd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-3347-2025-ie00001.svg" width="14pt" height="16pt" src="acp-25-3347-2025-ie00001.png"/></svg:svg></span></span>). The CBLHs from the MMCR <span class="inline-formula"><i>w</i></span> in the selected durations are compared with those estimated by the lidar range-corrected signal (RCS) and radiosonde temperature based on different algorithms, showing good agreement with each other. Although these algorithms are based on different dynamic and thermodynamic effects, the diurnal evolution of the CBLH from MMCR is generally consistent with that from lidar, except for a few hours post-sunrise and pre-sunset due to the influence of the aerosol residual layer on the lidar RCS. Meanwhile, the CBLH from MMCR shows less variation with the occurrence of sand and dust and a swifter response for thick clouds relative to that from lidar. In this case, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">σ</mi><mi mathvariant="normal">w</mi><mn mathvariant="normal">2</mn></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2a1698782d2a3a0cd31bf65df271295b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-3347-2025-ie00002.svg" width="14pt" height="16pt" src="acp-25-3347-2025-ie00002.png"/></svg:svg></span></span> of the MMCR <span class="inline-formula"><i>w</i></span> identifies the CBLH based on a dynamic effect, which can accurately capture the diurnal evolution of the CBLH compared with that from the change in long-time-mixing aerosol concentration. The monthly and seasonal features of the CBLH at Wuhan are revealed via the MMCR measurement. Hence, considering that the MMCR is capable of continuous observation in various weather conditions, the MMCR <span class="inline-formula"><i>w</i></span> with high resolution can be applied for monitoring the evolution of the CBLH in different atmospheric conditions, which is helpful for improving our comprehensive understanding of the convective boundary layer (CBL) and dynamic processes in the CBL.</p>https://acp.copernicus.org/articles/25/3347/2025/acp-25-3347-2025.pdf
spellingShingle Z. Zhang
Z. Zhang
Z. Zhang
K. Huang
K. Huang
K. Huang
F. Yi
F. Yi
F. Yi
W. Cheng
F. Liu
F. Liu
F. Liu
J. Zhang
Y. Jia
Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central China
Atmospheric Chemistry and Physics
title Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central China
title_full Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central China
title_fullStr Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central China
title_full_unstemmed Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central China
title_short Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central China
title_sort technical note evolution of convective boundary layer height estimated by ka band continuous millimeter wave radar at wuhan in central china
url https://acp.copernicus.org/articles/25/3347/2025/acp-25-3347-2025.pdf
work_keys_str_mv AT zzhang technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT zzhang technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT zzhang technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT khuang technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT khuang technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT khuang technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT fyi technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT fyi technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT fyi technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT wcheng technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT fliu technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT fliu technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT fliu technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT jzhang technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina
AT yjia technicalnoteevolutionofconvectiveboundarylayerheightestimatedbykabandcontinuousmillimeterwaveradaratwuhanincentralchina