The use of phosphate rock and plant growth promoting microorganisms for the management of Urochloa decumbens (Stapf.) R.D. Webster in acidic soils
Background Forage production in tropical soils is primarily limited by nutrient deficiencies, especially nitrogen (N) and phosphorus (P). The use of phosphate rock by plants is limited by its low and slow P availability and microbial phosphate solubilization is the main mechanism for P bioavailabili...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
PeerJ Inc.
2024-12-01
|
| Series: | PeerJ |
| Subjects: | |
| Online Access: | https://peerj.com/articles/18610.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846136724724383744 |
|---|---|
| author | Alexandro Barbosa Isbelia Reyes Alexis Valery Carlos Chacón Labrador Oscar Martínez Maximo F. Alonso |
| author_facet | Alexandro Barbosa Isbelia Reyes Alexis Valery Carlos Chacón Labrador Oscar Martínez Maximo F. Alonso |
| author_sort | Alexandro Barbosa |
| collection | DOAJ |
| description | Background Forage production in tropical soils is primarily limited by nutrient deficiencies, especially nitrogen (N) and phosphorus (P). The use of phosphate rock by plants is limited by its low and slow P availability and microbial phosphate solubilization is the main mechanism for P bioavailability in the soil-root system. The objectives of this study were (i) select a nitrogen-fixing bacteria which could be used as a co-inoculant with the Penicillium rugulosum IR94MF1 phosphate-solubilizing fungus and (ii) evaluate under field conditions the effect of inoculation combined with phosphate rock (PR) application on yield and nutrient absorption of a Urochloa decumbens pasture which was previously established in a low-fertility, acidic soil. Methods Various laboratory and greenhouse tests allowed for the selection of Enterobacter cloacae C17 as the co-inoculant bacteria with the IR94MF1 fungus. Later, under field conditions, a factorial, completely randomized block design was used to evaluate the inoculation with the IR94MF1 fungus, the IR94MF1+C17 co-inoculation, and a non-inoculated control. Two levels of fertilization with PR treatment (0 kg/ha and 200 kg/ha P2O5) were applied to each. Results During five consecutive harvests it was observed that the addition of biofertilizers significantly increased (p < 0.05) the herbage mass and N and P assimilation compared to the non-inoculated control. However, no statistically significant differences were observed for the PR application as P source. Conclusion P. rugulosum IR94MF1 is capable of solubilizing and accumulating P from the phosphate rock, making it available for plants growing in acid soils with low N content. These inoculants represent a good option as biofertilizers for tropical grasses already established in acidic soils with low N content. |
| format | Article |
| id | doaj-art-d9cf268e3ffe479e833803ed9f22601d |
| institution | Kabale University |
| issn | 2167-8359 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | PeerJ Inc. |
| record_format | Article |
| series | PeerJ |
| spelling | doaj-art-d9cf268e3ffe479e833803ed9f22601d2024-12-08T15:05:15ZengPeerJ Inc.PeerJ2167-83592024-12-0112e1861010.7717/peerj.18610The use of phosphate rock and plant growth promoting microorganisms for the management of Urochloa decumbens (Stapf.) R.D. Webster in acidic soilsAlexandro Barbosa0Isbelia Reyes1Alexis Valery2Carlos Chacón Labrador3Oscar Martínez4Maximo F. Alonso5Escuela de Graduados, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Los Ríos, ChileDecanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristobal, Tachira, VenezuelaDecanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristobal, Tachira, VenezuelaDepartamento de Ingeniería Agronómica, Universidad Nacional Experimental del Táchira, San Cristobal, Tachira, VenezuelaInstituto de Microbiología y Bioquímica, Universidad Austral de Chile, Valdivia, Los Ríos, ChileInstituto de Producción Animal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Los Ríos, ChileBackground Forage production in tropical soils is primarily limited by nutrient deficiencies, especially nitrogen (N) and phosphorus (P). The use of phosphate rock by plants is limited by its low and slow P availability and microbial phosphate solubilization is the main mechanism for P bioavailability in the soil-root system. The objectives of this study were (i) select a nitrogen-fixing bacteria which could be used as a co-inoculant with the Penicillium rugulosum IR94MF1 phosphate-solubilizing fungus and (ii) evaluate under field conditions the effect of inoculation combined with phosphate rock (PR) application on yield and nutrient absorption of a Urochloa decumbens pasture which was previously established in a low-fertility, acidic soil. Methods Various laboratory and greenhouse tests allowed for the selection of Enterobacter cloacae C17 as the co-inoculant bacteria with the IR94MF1 fungus. Later, under field conditions, a factorial, completely randomized block design was used to evaluate the inoculation with the IR94MF1 fungus, the IR94MF1+C17 co-inoculation, and a non-inoculated control. Two levels of fertilization with PR treatment (0 kg/ha and 200 kg/ha P2O5) were applied to each. Results During five consecutive harvests it was observed that the addition of biofertilizers significantly increased (p < 0.05) the herbage mass and N and P assimilation compared to the non-inoculated control. However, no statistically significant differences were observed for the PR application as P source. Conclusion P. rugulosum IR94MF1 is capable of solubilizing and accumulating P from the phosphate rock, making it available for plants growing in acid soils with low N content. These inoculants represent a good option as biofertilizers for tropical grasses already established in acidic soils with low N content.https://peerj.com/articles/18610.pdfSolubilization of phosphatesPenicillium rugulosumEnterobacter cloacaeMicrobial co-inoculation |
| spellingShingle | Alexandro Barbosa Isbelia Reyes Alexis Valery Carlos Chacón Labrador Oscar Martínez Maximo F. Alonso The use of phosphate rock and plant growth promoting microorganisms for the management of Urochloa decumbens (Stapf.) R.D. Webster in acidic soils PeerJ Solubilization of phosphates Penicillium rugulosum Enterobacter cloacae Microbial co-inoculation |
| title | The use of phosphate rock and plant growth promoting microorganisms for the management of Urochloa decumbens (Stapf.) R.D. Webster in acidic soils |
| title_full | The use of phosphate rock and plant growth promoting microorganisms for the management of Urochloa decumbens (Stapf.) R.D. Webster in acidic soils |
| title_fullStr | The use of phosphate rock and plant growth promoting microorganisms for the management of Urochloa decumbens (Stapf.) R.D. Webster in acidic soils |
| title_full_unstemmed | The use of phosphate rock and plant growth promoting microorganisms for the management of Urochloa decumbens (Stapf.) R.D. Webster in acidic soils |
| title_short | The use of phosphate rock and plant growth promoting microorganisms for the management of Urochloa decumbens (Stapf.) R.D. Webster in acidic soils |
| title_sort | use of phosphate rock and plant growth promoting microorganisms for the management of urochloa decumbens stapf r d webster in acidic soils |
| topic | Solubilization of phosphates Penicillium rugulosum Enterobacter cloacae Microbial co-inoculation |
| url | https://peerj.com/articles/18610.pdf |
| work_keys_str_mv | AT alexandrobarbosa theuseofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT isbeliareyes theuseofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT alexisvalery theuseofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT carloschaconlabrador theuseofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT oscarmartinez theuseofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT maximofalonso theuseofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT alexandrobarbosa useofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT isbeliareyes useofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT alexisvalery useofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT carloschaconlabrador useofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT oscarmartinez useofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils AT maximofalonso useofphosphaterockandplantgrowthpromotingmicroorganismsforthemanagementofurochloadecumbensstapfrdwebsterinacidicsoils |