Revisiting X-Ray Afterglows of Jetted Tidal Disruption Events with the External Reverse Shock
We investigate the external reverse shock (RS) region of relativistic jets as the origin of X-ray afterglows of jetted tidal disruption events (TDEs) that exhibit luminous jets accompanied by fast-declining nonthermal X-ray emissions. We model the dynamics of jet propagating within an external densi...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | The Astrophysical Journal |
| Subjects: | |
| Online Access: | https://doi.org/10.3847/1538-4357/adbbde |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We investigate the external reverse shock (RS) region of relativistic jets as the origin of X-ray afterglows of jetted tidal disruption events (TDEs) that exhibit luminous jets accompanied by fast-declining nonthermal X-ray emissions. We model the dynamics of jet propagating within an external density medium, accounting for continuous energy injection driven by accretion activities. We compute the time-dependent synchrotron and inverse Compton emissions from the RS region. Our analysis demonstrates that the RS scenario can potentially explain the X-ray light curves and spectra of four jetted TDEs, namely, AT 2022cmc, Swift J1644, Swift J2058, and Swift J1112. Notably, the rapid steepening of the late-stage X-ray light curves can be attributed jointly to the jet break and cessation of the central engine as the accretion rate drops below the Eddington limit. Using parameters obtained from X-ray data fitting, we also discuss the prospects for γ -ray and neutrino detection. |
|---|---|
| ISSN: | 1538-4357 |