Revisiting X-Ray Afterglows of Jetted Tidal Disruption Events with the External Reverse Shock

We investigate the external reverse shock (RS) region of relativistic jets as the origin of X-ray afterglows of jetted tidal disruption events (TDEs) that exhibit luminous jets accompanied by fast-declining nonthermal X-ray emissions. We model the dynamics of jet propagating within an external densi...

Full description

Saved in:
Bibliographic Details
Main Authors: Chengchao Yuan, Walter Winter, B. Theodore Zhang, Kohta Murase, Bing Zhang
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/adbbde
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the external reverse shock (RS) region of relativistic jets as the origin of X-ray afterglows of jetted tidal disruption events (TDEs) that exhibit luminous jets accompanied by fast-declining nonthermal X-ray emissions. We model the dynamics of jet propagating within an external density medium, accounting for continuous energy injection driven by accretion activities. We compute the time-dependent synchrotron and inverse Compton emissions from the RS region. Our analysis demonstrates that the RS scenario can potentially explain the X-ray light curves and spectra of four jetted TDEs, namely, AT 2022cmc, Swift J1644, Swift J2058, and Swift J1112. Notably, the rapid steepening of the late-stage X-ray light curves can be attributed jointly to the jet break and cessation of the central engine as the accretion rate drops below the Eddington limit. Using parameters obtained from X-ray data fitting, we also discuss the prospects for γ -ray and neutrino detection.
ISSN:1538-4357