β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis

Summary: The ability of cancer cells to deform and generate force is implicated in metastasis. We previously showed that β-adrenergic agonists increase cancer cell stiffness, which was associated with enhanced motility and invasion. Here, we investigate how β-adrenoceptor (βAR) activation alters the...

Full description

Saved in:
Bibliographic Details
Main Authors: Tae-Hyung Kim, Minh-Tam Tran Le, Mijung Oh, Esteban Vazquez-Hidalgo, Bryanna Chavez, Donald M. Lamkin, Alexander Abdou, Xing Haw Marvin Tan, Alexei Christodoulides, Carly M. Farris, Changhoon Lee, Pei-Yu Chiou, Erica K. Sloan, Parag Katira, Amy C. Rowat
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S258900422500937X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849699604977680384
author Tae-Hyung Kim
Minh-Tam Tran Le
Mijung Oh
Esteban Vazquez-Hidalgo
Bryanna Chavez
Donald M. Lamkin
Alexander Abdou
Xing Haw Marvin Tan
Alexei Christodoulides
Carly M. Farris
Changhoon Lee
Pei-Yu Chiou
Erica K. Sloan
Parag Katira
Amy C. Rowat
author_facet Tae-Hyung Kim
Minh-Tam Tran Le
Mijung Oh
Esteban Vazquez-Hidalgo
Bryanna Chavez
Donald M. Lamkin
Alexander Abdou
Xing Haw Marvin Tan
Alexei Christodoulides
Carly M. Farris
Changhoon Lee
Pei-Yu Chiou
Erica K. Sloan
Parag Katira
Amy C. Rowat
author_sort Tae-Hyung Kim
collection DOAJ
description Summary: The ability of cancer cells to deform and generate force is implicated in metastasis. We previously showed that β-adrenergic agonists increase cancer cell stiffness, which was associated with enhanced motility and invasion. Here, we investigate how β-adrenoceptor (βAR) activation alters the mechanical behaviors of triple-negative breast cancer cells. We find that βAR activation increases traction forces in metastatic MDA-MB-231HM and MDA-MB-468 cells, but not in non-tumorigenic MCF10A cells. Using computational modeling, we show that βAR activation increases the number of active myosin motors via myosin light chain phosphorylation. To identify molecular regulators, we use a deformability assay to screen for pharmacologic and genetic perturbations. Our results define a βAR-RhoA-ROCK-non-muscle myosin II (NMII) signaling axis that modulates the mechanical behaviors of MDA-MB-231HM and MDA-MB-468 cells. These findings provide insight into how stress signaling regulates cancer cell mechanics and suggest potential targets to block metastasis in triple-negative breast cancer.
format Article
id doaj-art-cf3448a244e244f7ba6e10367cebe66a
institution DOAJ
issn 2589-0042
language English
publishDate 2025-06-01
publisher Elsevier
record_format Article
series iScience
spelling doaj-art-cf3448a244e244f7ba6e10367cebe66a2025-08-20T03:18:32ZengElsevieriScience2589-00422025-06-0128611267610.1016/j.isci.2025.112676β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axisTae-Hyung Kim0Minh-Tam Tran Le1Mijung Oh2Esteban Vazquez-Hidalgo3Bryanna Chavez4Donald M. Lamkin5Alexander Abdou6Xing Haw Marvin Tan7Alexei Christodoulides8Carly M. Farris9Changhoon Lee10Pei-Yu Chiou11Erica K. Sloan12Parag Katira13Amy C. Rowat14Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, USA; Corresponding authorDepartment of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USADepartment of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, USAMechanical Engineering Department, San Diego State University, San Diego, CA, USA; Computational Science Research Center, San Diego State University, San Diego, CA, USADepartment of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USACousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USADepartment of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USADepartment of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USADepartment of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USAMechanical Engineering Department, San Diego State University, San Diego, CA, USA; Computational Science Research Center, San Diego State University, San Diego, CA, USADepartment of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USADepartment of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USADrug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, AustraliaMechanical Engineering Department, San Diego State University, San Diego, CA, USA; Computational Science Research Center, San Diego State University, San Diego, CA, USADepartment of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Corresponding authorSummary: The ability of cancer cells to deform and generate force is implicated in metastasis. We previously showed that β-adrenergic agonists increase cancer cell stiffness, which was associated with enhanced motility and invasion. Here, we investigate how β-adrenoceptor (βAR) activation alters the mechanical behaviors of triple-negative breast cancer cells. We find that βAR activation increases traction forces in metastatic MDA-MB-231HM and MDA-MB-468 cells, but not in non-tumorigenic MCF10A cells. Using computational modeling, we show that βAR activation increases the number of active myosin motors via myosin light chain phosphorylation. To identify molecular regulators, we use a deformability assay to screen for pharmacologic and genetic perturbations. Our results define a βAR-RhoA-ROCK-non-muscle myosin II (NMII) signaling axis that modulates the mechanical behaviors of MDA-MB-231HM and MDA-MB-468 cells. These findings provide insight into how stress signaling regulates cancer cell mechanics and suggest potential targets to block metastasis in triple-negative breast cancer.http://www.sciencedirect.com/science/article/pii/S258900422500937XMechanobiologyCell biologyFunctional aspects of cell biology
spellingShingle Tae-Hyung Kim
Minh-Tam Tran Le
Mijung Oh
Esteban Vazquez-Hidalgo
Bryanna Chavez
Donald M. Lamkin
Alexander Abdou
Xing Haw Marvin Tan
Alexei Christodoulides
Carly M. Farris
Changhoon Lee
Pei-Yu Chiou
Erica K. Sloan
Parag Katira
Amy C. Rowat
β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis
iScience
Mechanobiology
Cell biology
Functional aspects of cell biology
title β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis
title_full β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis
title_fullStr β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis
title_full_unstemmed β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis
title_short β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis
title_sort β adrenergic signaling modulates breast cancer cell mechanical behaviors through a rhoa rock myosin ii axis
topic Mechanobiology
Cell biology
Functional aspects of cell biology
url http://www.sciencedirect.com/science/article/pii/S258900422500937X
work_keys_str_mv AT taehyungkim badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT minhtamtranle badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT mijungoh badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT estebanvazquezhidalgo badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT bryannachavez badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT donaldmlamkin badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT alexanderabdou badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT xinghawmarvintan badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT alexeichristodoulides badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT carlymfarris badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT changhoonlee badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT peiyuchiou badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT ericaksloan badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT paragkatira badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis
AT amycrowat badrenergicsignalingmodulatesbreastcancercellmechanicalbehaviorsthrougharhoarockmyosiniiaxis