Preparation of a Microporous Polyurethane Film with Negative Surface Charge for siRNA Delivery via Stent

Polyurethane (PU) and polyethylene glycol (PEG) were used to prepare a porous stent-covering material for the controlled delivery of small interfering RNA (siRNA). Microporous polymer films were prepared using a blend of polyurethane and water-soluble polyethylene glycol by the solution casting meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Il-Hoon Cho, Sangsoo Park
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2017/2841682
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyurethane (PU) and polyethylene glycol (PEG) were used to prepare a porous stent-covering material for the controlled delivery of small interfering RNA (siRNA). Microporous polymer films were prepared using a blend of polyurethane and water-soluble polyethylene glycol by the solution casting method; the PEG component was extracted in water to make the film microporous. This film was dipped in 2% poly(methyl methacrylate-co-methacrylic acid) solution to coat the polymer film with the anionic polyelectrolyte. The chemical components of the film surface were characterized by Fourier Transform Infrared (FTIR) spectroscopy and its structural morphology was examined by scanning electron microscopy (SEM). The effect of the negatively charged surface after attachment of a fluorescein isothiocyanate- (FITC-) labeled siRNA-polyethyleneimine complex onto the microporous polyurethane film and the controlled release of the complex from the film was investigated by fluorescence microscopy. Fluorescence microscopy showed the PU surface with intense fluorescence by the aggregates of the FITC-labeled-siRNA-PEI complex (measuring up to few microns in size); additionally, the negatively charged PU surface revealed broad and diffuse fluorescence. These results suggest that the construction of negatively charged microporous polyurethane films is feasible and could be applied for enhancing the efficiency of siRNA delivery via a stent-covering polyurethane film.
ISSN:1687-9422
1687-9430