A Pore-Scale Simulation on Thermal-Hydromechanical Coupling Mechanism of Rock
Thermal-hydromechanical (THM) coupling process is a key issue in geotechnical engineering emphasized by many scholars. Most existing studies are conducted at macroscale or mesoscale. This paper presents a pore-scale THM coupling study of the immiscible two-phase flow in the perfect-plastic rock. Ass...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2017-01-01
|
| Series: | Geofluids |
| Online Access: | http://dx.doi.org/10.1155/2017/7510527 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Thermal-hydromechanical (THM) coupling process is a key issue in geotechnical engineering emphasized by many scholars. Most existing studies are conducted at macroscale or mesoscale. This paper presents a pore-scale THM coupling study of the immiscible two-phase flow in the perfect-plastic rock. Assembled rock matrix and pore space models are reconstructed using micro-CT image. The rock deformation and fluid flow are simulated using ANSYS and CFX software, respectively, in which process the coupled physical parameters will be exchanged by ANSYS multiphysics platform at the end of each iteration. Effects of stress and temperature on the rock porosity, permeability, microstructure, and the displacing mechanism of water flooding process are analyzed and revealed. |
|---|---|
| ISSN: | 1468-8115 1468-8123 |