Spatiotemporal Variation Patterns of and Response Differences in Water Conservation in China’s Nine Major River Basins Under Climate Change
As a crucial manifestation of ecosystem water regulation and supply functions, water conservation plays a vital role in regional ecosystem development and sustainable water resource management. This study investigates nine major Chinese river basins (Songliao, Haihe, Huaihe, Yellow, Yangtze, Pearl,...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Atmosphere |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4433/16/7/837 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As a crucial manifestation of ecosystem water regulation and supply functions, water conservation plays a vital role in regional ecosystem development and sustainable water resource management. This study investigates nine major Chinese river basins (Songliao, Haihe, Huaihe, Yellow, Yangtze, Pearl, Southeast Rivers, Southwest Rivers, and Inland Rivers) through integrated application of the InVEST model and geographical detector model. We systematically examine the spatiotemporal heterogeneity of water conservation capacity and its driving mechanisms from 1990 to 2020. The results reveal a distinct northwest–southeast spatial gradient in water conservation across China, with lower values predominating in northwestern regions. Minimum conservation values were recorded in the Inland River Basin (15.88 mm), Haihe River Basin (42.07 mm), and Yellow River Basin (43.55 mm), while maximum capacities occurred in the Pearl River Basin (483.68 mm) and Southeast Rivers Basin (517.21 mm). Temporal analysis showed interannual fluctuations, peaking in 2020 at 130.98 mm and reaching its lowest point in 2015 at 113.04 mm. Precipitation emerged as the dominant factor governing spatial patterns, with higher rainfall correlating strongly with enhanced conservation capacity. Land cover analysis revealed superior water retention in vegetated areas (forests, grasslands, and cultivated land) compared to urbanized and bare land surfaces. Our findings demonstrate that water conservation dynamics result from synergistic interactions among multiple factors rather than single-variable influences. Accordingly, we propose that future water resource policies adopt an integrated management approach addressing climate patterns, land use optimization, and socioeconomic factors to develop targeted conservation strategies. |
|---|---|
| ISSN: | 2073-4433 |