Neural network and Markov based combination prediction algorithm of video popularity

Caching popular video into user-side in advance improves the user experience and reduces operator costs, which is a common practice in the industry.How to effectively predict the popularity of videos has become a hot issue in the industry.On account of the shortcomings of traditional prediction algo...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuesen MA, Shuyou CHEN, Xiangdong XU, Zhaokun CHU
Format: Article
Language:zho
Published: Beijing Xintong Media Co., Ltd 2021-08-01
Series:Dianxin kexue
Subjects:
Online Access:http://www.telecomsci.com/zh/article/doi/10.11959/j.issn.1000-0801.2021116/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Caching popular video into user-side in advance improves the user experience and reduces operator costs, which is a common practice in the industry.How to effectively predict the popularity of videos has become a hot issue in the industry.On account of the shortcomings of traditional prediction algorithms such as poor nonlinear mapping ability, low prediction accuracy and weak adaptability, a video popularity prediction algorithm based on a neural network and Markov combined model (Mar-BiLSTM) was proposed.Information dependencies were preserved by constructing bidirectional memory network model (bi-directional long short-term memory, BiLSTM), the prediction accuracy of the model was further improved by using Markov properties while avoiding the increase of the complexity of the model caused by the introduction of external variables.Experimental results show that compared with traditional time series and classic neural network algorithms, the proposed algorithm improves predicting accuracy, effectiveness and reduces the amount of calculation.
ISSN:1000-0801